
Finite Element Analysis 
Prof. Dr. B. N. Rao 

Department of Civil Engineering 
Indian Institute of Technology, Madras 

 
Module No. # 01 
Lecture No. # 08 

 

In the last lecture, we have seen how to solve 2 dimensional plane truss and 3 

dimensional space truss problems. Basically, in both of these, knowing the orientation of 

a truss member and knowing the extreme ends of a truss member, we calculated direction 

cosines. Using the direction cosines and material property, geometric properties of a 

particular truss member, we assembled element stiffness matrices for each of the truss 

member. Then, based on the element connectivity, that is for each truss element, based 

on the node numbers of the extreme ends, we assembled the global stiffness matrix. 

Later, we imposed essential boundary condition, that is a displacement boundary 

conditions. In addition, we made sure that the loads were applied at appropriate locations 

in the global force vector and we solved the reduced equation system after applying the 

essential boundary condition, that is, displacement boundary condition. We solved the 

reduced equation system. Once we obtained the unknown displacements, we went back 

to each element and we calculated strains, stresses, and the loads on that particular truss 

member. Knowing the global displacements, we calculated local displacements using 

transformation matrix. 
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In this exercise, I want to emphasize two things. First thing is – we applied loads at node 

arbitrarily; that is, loads applied at a node can be arbitrarily assigned to any of the 

elements connected to the node. This is one thing. The other thing is – the terms in the 

global stiffness matrix corresponding to the nodes with zero displacements have no 

influence in the final system of equations. To minimize calculations, we ignored rows 

and columns corresponding to zero specified displacements. If the specified 

displacements are non-zero, then we actually need the columns corresponding to those 

specified degrees. Freedom – using those, we calculate some contribution and also with 

the help of that we calculate reactions. 

With that, we will start looking at the stresses due to lack of fit and temperature changes 

in truss problems. Usually, the stresses are induced in the indeterminate trusses due to 

temperature change, changes in some elements, or because of forced fit if an element is 

fabricated too short or too long. So, both kinds of problems: that is, if you want to solve a 

problem to determine stress in the truss problem; to determine stresses due to lack of fit 

or temperature change, the procedure is almost similar. So, both situations can be 

analyzed in a similar manner by applying force equivalent to the change in the length of 

the element. 
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Let us see what happens. Suppose an element of length L is fabricated too short by an 

amount delta L; that is, first, we are going to look at the stresses – how to compute the 

stresses due to lack of fit in a truss member. Let us say an element of length L is 

fabricated too short by an amount delta L. If the element is fabricated too long by an 

amount delta L, we need to change the sign. Then, it becomes negative of this; that is, 

minus delta L. The tensile force would be required to make this element fit into the 

structure, because the member is long. So, to fit this truss member into the particular 

structure, we need to apply some tensile force. Because it is too short, we need to just 

stretch it. After this element is put in place in the structure – that means a member is too 

short; by some means it is stretched and placed in the structure. What this member will 

do when it is put in the structure? It will exert an equal and opposite force on the entire 

structure. So, this is what is expected. 

Suppose instead of a member being too short by a certain amount, if it is little bit longer 

by certain amount, then we need to apply some compressive force to force fit into the 

given structure. What this will do is – when you force fit it, the member will be under 

compression and that member in turn will exert an equal and opposite force, which is 

going to be tensile force, if it is too long. Now, since the member is too short, the 

member will be under tensile force, whereas it is going to exert a compressive force in 

the structure. The analysis corresponding to these forces proceeds in the usual manner 



except that at the end, when we are calculating element forces, we need to add the forces 

due to the lack of fit. 
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The final element forces in the element with lack of fit are a superposition of the initial 

forces and the forces computed from the analysis of the entire structure. So, for plane 

truss problems, the equation looks like this – the first term P FT is nothing but the force 

that is required to stretch a member or to compress a member to force fit into the given 

structure. This is for plane truss. However, rest of the analysis proceeds in the similar 

manner, which we already looked at in last class. For space truss, the equation looks like 

this – again the additional term here is P FT, which is nothing but the force due to force 

fit. 
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Now, how to solve problems because of change in the temperature? We know that 

change in the length of a bar subjected to a temperature of delta T is given by delta L is 

equal to alpha delta T times L, where alpha is the coefficient of thermal expansion; delta 

T is the change in the temperature; L is length of original length of the member. This 

change in length of the element can be treated in a similar manner as that of lack of fit. 

Now, because of temperature change, there will be change in the length of the member, 

which exerts some kind of force on a given structure. So, analysis proceeds in a similar 

manner as that of lack of fit. 
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Now, let us take a problem to understand the various steps involved – a plane truss 

problem. Find displacement and axial forces in the truss shown in figure below if the 

element 1 is fabricated 4 and half inch – corresponding SI units in millimeters are also 

given – the element 1 is fabricated too short by an amount 6.35 millimeters or one-fourth 

an inch, and is forced to fit assembly. This member is too short and by some means it is 

stretched and force fitted. We need to analyze this plane truss for displacement and axial 

forces. Material properties are given – E and cross sectional area of members – all 

members are of same cross sectional area. They are given in the problem statement. 

Here, 10 is feet. The dimensions are indicated there. 
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Let us see what this member is a going to do. Figure b shows that the truss member, 

which is short is by some means stretched. So, it will be under tensile force. This 

member in turn will exert an equal and opposite force, which is shown in figure c. So, 

this member is going to exert a force as shown in figure c on the structure. So, what we 

need to do is, we need to proceed and solve the problem, which is shown in figure c after 

calculating P FT. For those forces and the given orientation of truss members, we need to 

solve the problem and find stresses and displacements. Once we get those values, what 

we need to do is, we need to superpose the values that are given in figure b. So, that is 

how the solution proceeds. 
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Now, let us look at the details – element equations. We need to start with element 1; 

element 1 – the local node 1 is same as global node 1; local node 2 is same as global 

node 4. So, element 1 goes from node 1 to node 4. Looking at the problem, we need to 

find the coordinates of node 1 – X 1 coordinate, Y 1 coordinate and X 4 coordinate, Y 4 

coordinate. Once we have these values, we can find what is dx, which is nothing but X4 

minus X1 and dy – Y4 minus Y1. All the quantities here are given in inches. The 

dimensions are given in inches and feet; feet is converted into inches. Length of the 

member is given by square root of dx square plus dy square. Once we know these values, 

we can find what is cosine alpha and sine alpha. Here, both are same and it is given there 

– 0.7071. EA over L is also calculated based on the material property, Young’s modulus. 

Cross sectional area of the number is given. So, once we know length, we can calculate 

that quantity. So, this is for element 1, which is going from node 1 to node 4. 

To have a better idea, let us go back to the figure and see (Refer Slide Time: 13:15). If 

you see figure a, element 1 is connecting node 1 to 4. Just now, we calculated the 

corresponding direction cosine values for that element. Similarly, element 2 is going 

from node 2 to node 4 and the element 3 is going from node 3 to node 4. So, we can 

calculate for those also in a similar manner. The global X coordinate and Y coordinate 

are defined at node 1. That is why, the nodal coordinates of node 1 are 0 0; the nodal 

coordinates of node 4 are 10 feet times 12, that is, 120 inches; X is 120; Y is also 120; 

nodal coordinates of node 2 are 0 and 240; nodal coordinates of node 3 are 120 and 240. 
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We already seen for element 1, what are the values. Once we have these values, we can 

assemble the element equations for element 1. Transformation matrix is given by these, 

which is c s 0 0 0 0 c s. Local stiffness is given by EA over L – 1 minus 1 minus 11. 

Once we have the transformation matrix and local stiffness matrix, global stiffness 

matrix is given by T transpose k l T. So, that is given by this one. 
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This member 1 is short by length one-fourth inch. So, we can .calculate the force P FT 

due to lack of fit for this member. EA over L delta L; delta L is one-fourth inch; all are in 



inches. So, one-fourth is substituted; that is, 0.25; it is calculated. The value both in FPS 

units and SI units kilonewtons are given there. This represents tensile force in element 1, 

as shown in figure b, which you already looked at. When this element is placed in the 

entire structure, the entire structure is under an equal and opposite force; we have already 

seen that; it is shown in figure c. 
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Element load vector is in the local coordinate system at node 1. P FT is acting in the 

direction of the member; that is, it is acting in the direction of local node 1 to 2 or it is 

acting in the direction from node 1 to 4. The first component is positive. The second 

component is acting in the opposite direction; so, negative sign is appended to it. In the 

local coordinate system, r l is given by this. We already know what is transformation 

matrix. So, we can calculate in the global coordinate system, what is the load vector. 

Please note that here we are assigning given loads to member 1. So, all the loads were 

assigned to only member 1; they are given here. 
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For element 2, local node 1 is global node 2, local node 2 is global node 4; it is assumed 

to be going from node 2 to node 4. Noting down the coordinates of node 1 and node 4, 

we can calculate what is dx, dy, and length of this member. Also, once these values are 

known, we can calculate what is cos alpha and sine alpha, and also EA over L. 
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Once we have all these quantities, we can calculate what is transformation matrix and 

what is local stiffness matrix. Global stiffness matrix k is given by T transpose k l T; that 

is, given by this one. 
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Next is element 3. Element 3: local node 1 is global node 3; local node 2 is global node 

4. Element 3 is going from node 3 to node 4. Noting down the coordinates of node 3 and 

node 4, we can calculate what is dx, what is dy. Length of the member can be calculated 

in a manner similar as we have seen for element 1 and element 2 – cos alpha, sine alpha 

and EA over L value. We can calculate what is transformation matrix, local stiffness 

matrix and the element stiffness matrix. The global coordinate system is given by this. 
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Please note the displacements at all nodes except node 4 or 0. This is what is required – 

instead of assembling, the entire global stiffness matrix. We can assemble directly the 

reduced stiffness matrix or reduced equation system. So, the global equations will be 2 

by 2 after imposing the boundary condition. This is a 2 dimensional or 2D plane truss 

problem. There are 4 nodes; at each node, we have 2 degrees of freedom. So, final global 

equation system or global stiffness matrix will be of dimension 8 by 8. However, instead 

of assembling entire global stiffness matrix of 8 by 8, we can directly assemble the 

reduced global stiffness matrix by deleting rows and columns. Corresponding to the 

nodes at which displacements are 0 – here node 1, node 2, node 3, all degrees of freedom 

are fixed. So, the corresponding rows and columns can be avoided. 

The contribution to the reduced stiffness matrix will come from the 4th quadrant. If you 

divide the stiffness matrix of element 1 into 4 quadrants; similarly, stiffness matrix of 

element 2 into 4 quadrants and stiffness matrix of element 3 into 4 quadrants… If you 

take the 4th quadrant and add the corresponding locations in the 4th quadrant of each of 

the element stiffness matrices, we will get the global reduced global stiffness matrix. 

These equations, that is, the global system equations can be assembled by simply adding 

the lower 2 by 2 submatrices for all the three elements. Please note that this is true only 

for this case, if you take element 1, it is going from node 1 to node 4; element 2 is going 

from node 2 to node 4; element 3 is going from node 3 to node 4. So, for all elements – 

1, 2, 3, 4th node is local node 2. So, that is why this is applicable only for this particular 



case; or, if you carefully number the node numbers similar kind of thing can be done for 

other problems also. So, the reduced global stiffness matrix is given by this one. Adding 

up the 4th quadrant of all – the element 1, element 2, element 3, stiffness matrices, we 

get the reduced global stiffness matrix. 
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The global load vector: global load vector is nothing but the load vector; the components 

of the load vector at location 7 and 8. That means we are removing all the components in 

the global load vector, which are corresponding to node 1, node 2, node 3, and which 

corresponds to the locations 1 to 6. Removing those, we get the reduced global load 

vector, which is shown there. So, we have reduced stiffness matrix and reduced load 

vector. So, we can write final reduced equation system, is given by this, which is a 2 by 2 

system. We can solve for u 4, v 4 and we get the values like this – all are in inches. Now, 

we got the nodal values – u 1, v 1; u 2, v 2; u 3, v 3. All these are 0. Whatever is non-

zero, that is, u 4, v 4 – we just obtain. 
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Now, we are ready to calculate or compute element forces. For each element, axial force 

can be computed as before using this one. Only the first term is additional one, which is 

contribution from lack of fit. For element 1, we have this term; for element 2, element 3, 

we do not have this term. For the first element, we must add initial tension to get the 

final axial force in it. 
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For element 1, the axial force is given by the value here. As expected, this value turns 

out to be positive, which means the member is in tension. That is what is expected 



because element 1 is short by certain amount. Force is stretched and force fitted is a 

structure. So, that particular member will be in tension. Element 2: as I mentioned, 

element 2 is not going to have P FT contribution, because there is no forced fit for 

element 2. So, P FT is 0. The calculations were similar to what we have seen in the 

earlier class, where there is no forced fit, such kinds of things. It turns out that the value 

of force in element 2 is negative, which means it is compressive. It is expected because 

when element 1 is force fitted, it is exerting compressive force over the rest of the 

structure. 
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Element 3 calculations are given here, which is also in tension. This example 

demonstrates how to calculate stresses and displacements, because of lack of fit. The 

procedure will be similar even if the problem is instead of lack of fit. It is due to change 

in the temperature. So, the procedure is similar. 

Now, we will go to the next concept, which is beam bending. So far, we have looked at 

trusses and the next one is beam bending. 
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Beam bending problem is governed by a 4th order differential equation. What we will do 

is – we will first derive the governing equation for beam bending problem. Then, the 2 

node element for bar element, which we are using so far, the same element we have 

adopted even for truss problems – that element at each node, you have 1 degree of 

freedom. So, that element is not applicable for solving beam bending problem. So, what 

we will do is – we derive finite element formulation for a two node beam element. As we 

did for two node bar element, we will be doing for two node beam element. However, if 

somebody is interested to derive the finite element formulation for three node beam 

element, similar procedure can be adopted to get the higher order beam elements. 

A beam is a structural member that carriers transverse load along x axis. Here, a typical 

beam is shown. Length of beam is large compared to its cross section dimensions. In 

general, cross section can be of any arbitrary shape and also it can vary along the length 

of the beam. However, what we will do is, whatever equations we are deriving in this 

course, we will limit ourselves to cross sections, which are symmetric with respect to the 

plane of loading. x-axis passes through the centroid of the section. A typical beam lying 

along x-axis and loaded in x y plane is shown there. One important thing is sign 

conventions, conventions adopted for positive directions for transverse displacements 

rotations, applied forces, applied moments, are shown there in the slide – nodal degrees 

of freedom and applied forces and moments. Also, sign convention for internal moments 

and internal shears are also shown there. 



Now, as we did for a bar under axial deformation, when we are deriving the governing 

differential equation, what we have done is, we have taken a differential element and 

based on the free body diagram of the differential element we derived the governing 

differential equation. Similar manner, a differential element is shown on which all the 

forces are indicated shear force moment on both the sides of the element. Element is of 

length dx. Now, as we did for bar under axial deformation, when it applies the equations 

of statics – here, forces are acting in the y direction. So, sum of all the forces in the y 

direction should be equal to 0; sum of all the moments taken about a point should be 

equal to 0. 
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Let us apply the first condition: sum of all forces in the y direction is equal to 0. That 

gives us derivative of shear force; special derivative of shear force is equal to the 

distributed load applied. Moment: sum of moments is equal to 0. That gives us that 

equation. Neglecting dx is small, dx square is going to be very small. So, neglecting dx 

square, we get derivative of moment; special derivative of moment is equal to shear 

force. The first equation gives – special derivative of shear force is equal to the applied 

distributed node. The second equation gives – special derivative of moment is equal to 

shear force. So, what we can do is, we can differentiate second equation one more time; 

differentiating second equation with respect to x one more time, we get this equation. 

Here, this equation gives us relation between moment and shear force and load applied, 



but we want to solve for displacements because of the transverse load. So, we need a 

relation between moments and transverse displacements. 
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Moments can be related to transverse displacements by considering beam deformation 

shown here. Deformation of beam is shown here. Here it is assumed that the 

displacement v is small; transverse displacement, v is small and plane sections remain 

plane after bending. If you look at the figure, point A located at a distance y from the 

neutral axis is displaced or shifted to point B. Initially, the vertical plane section has 

rotated by an amount equal to first derivative of transverse displacement with respect to 

the x. So, that is equal to theta; that is, it is rotated by an angle equal to dv over dx. 

Assuming u, here two displacement components are shown: u and v. u is in the x 

direction, v is in the y direction. Assuming u to be positive in the positive x direction, the 

point A because of application of load and bending beam deformation, it has moved in 

the negative x direction. 
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u component of displacement of point A is given by u is equal to minus y dv by dx – 

minus is because it is moved in the opposite direction – to the positive x direction. This 

gives us relation between displacement with x direction and displacement in the y 

direction or rotation. Using strain displacement equation, axial strain is given by epsilon 

is equal to derivative of u with respect to x. Just now, we derived what is u – u is minus y 

dv by dx. So, taking derivative of that, we get this. 

Using Hook’s law, axial stress is given by Young’s modulus times epsilon – E is 

Young’s modulus there. So, axial stress is given by this (Refer Slide Time: 36:52). If you 

plot this variation of stress over a cross section, it looks like this. So, this equation shows 

a linear variation of stress over beam section. The equilibrium at a section requires stress 

resultant over the cross section – must be 0 because there is no applied forces in the x 

direction. Since x-axis is assume to pass through the centroid of a section, it is clear that 

this requirement implies that neutral axis pass through centroid of the section. Also, 

moment equilibrium condition requires that moment of forces acting on cross section 

must be equal to the applied moment at the section. So, the resulting moment from the 

stress distribution shown in figure given here results in the following moment curvature 

relationship. So, taking moment of stress over area, stress over area dA gives you force 

over the differential element. So, sigma times dA. If the force is in the positive x 

direction, it is a tension; if it is in the negative x direction, it is assumed to be 

compression. 
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Here the sigma times dA is acting in the negative x direction and because of that, it gives 

a moment, which is opposite to the sign convention. That is why the relation here is, M is 

equal to minus sigma y – y is the distance of the differential element from the centroid or 

the neutral axis – this is for a differential element dA. We need to sum up over the entire 

cross sectional area. So, it is minus integral sigma x y dA. Sigma value is substituted 

there. Finally, it is equal to EI second derivative of transverse displacement; moment is 

equal to EI second derivative of transverse displacement. So, this is the relation between 

moment and transverse displacement. I – here is defined as integral y square dA – over 

the cross section; it is called the moment of inertia of a cross section. So, now, we got the 

relation between moment – please note that this is internal moment – moment and 

transverse displacement. Earlier, we have seen what is the relation between moment and 

load applied. 
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We can rewrite the previous equation and obtain the governing differential equation in 

terms of transverse displacement. Here basically, M is equal to EI second derivative of 

transverse displacement with respect to the special coordinate is substituted and we 

obtain this equation. 
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The governing differential equation is this. It can be observed that this is a 4th order 

differential equation in transverse displacement v. So, we require four boundary 



conditions to solve this equation. The boundary conditions may involve derivatives of 

transverse displacement up to third order. 
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Physically, boundary conditions have the following meaning: v is transverse 

displacement; derivative of v is nothing but rotation; second derivative of v times 

modulus of rigidity, that is, EI gives you moment; EI times third derivative of transverse 

displacement gives shear. So, any combination of these boundary conditions can be 

given. Four boundary conditions are required to solve this problem. Looking at this 

physical meaning of the terms, the boundary conditions involving v and derivative of v 

are essential, and the boundary conditions involving second derivative of v and third 

derivative of v are natural boundary condition. This can be verified using the thumb rule 

that I gave in the earlier classes. So, if a differential equation is of order 2 p, those 

boundary conditions of order 0 to p minus 1 are essential boundary condition and those 

boundary conditions of order p to 2 p minus 1 are natural boundary conditions. Based on 

the thumb rule, we can classify the boundary conditions involving v and first derivative 

of v are essential, and boundary conditions involving second and third derivatives of 

transverse displacement are natural boundary conditions. So, now, we got the differential 

equation, the boundary conditions. 
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Now, we are ready to apply variational approach to get the equal and functional. Now, to 

find that, the procedure is as follows: multiply the given differential equation with 

variation of transverse displacement, integrate over the problem domain. Here, the 

problem domain is taken as x 1 to x 2. Next step is, any of the higher terms having higher 

order derivatives, we can reduce the order of derivative by using integration by parts. 

Also, please note that integration by parts can be applied as many number of times as one 

wishes to reduce the order of differentiation. 

Integrate first term by parts. That gives us this equation (Refer Slide Time: 44:43). If you 

see the second term, which is integral, the first term in integral is actually having 

derivative of second derivative of transverse displacement, which turns out to be the 

third derivative of transverse displacement. So, we can still use one more time, this 

integration by parts and reduce the order of differentiation of that term. Also, note that 

derivative of variation of v with respect x is same as variation of derivative of v with 

respect to x. 
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Since differentiation and variational operators are interchangeable, we can write that in 

that manner. Noting these points, this equation can be written in this manner. Now, 

wherever E times second derivative of v appears, we can replace it with M, internal 

moment. Wherever E times third derivative of v appears, we can replace that with 

internal shear. Also, we can apply variational identity. 
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We can apply variational identity to reduce or to rewrite this equation. So, this is the 

relation between internal moment and transverse displacement, internal shear and 



transverse displacement. In addition to these, we will be using this variational identity, 

which one can easily verify. So, wherever the right-hand term appears, we can replace it 

with the left-hand side term. 
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Using these definitions of internal moment, internal shear and variational identity, the 

previous equation can be rewritten in this manner. Here, inside integral integrant is in the 

form variation of u plus variation of v. So, we can bring that variational operator out; I 

sort the integral, since variational operator and integral operator are interchangeable. So, 

we get this one. 

Now, to simply this equation further two conditions arises: if essential boundary 

conditions are specified and if natural boundary conditions are specified. If essential 

boundary conditions are specified, please note that for a beam problem, displacement 

and rotations – both are essential boundary conditions. So, wherever displacement and 

rotations are specified, at those locations, variation of transverse displacement, variation 

of rotation should be equal to 0. That is what we learnt earlier. So, with that reasoning, 

the first two terms get cancelled if essential boundary conditions are specified and the 

equivalent functional… 
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This is the reason. The admissible trial solution must be such that their variations at the 

corresponding ends be 0. Therefore, with the use of admissible functions, the boundary 

terms vanishes. 

(Refer Slide Time: 49:08) 

 

The equivalent functional becomes this one. Whatever is there inside variation that is 

nothing but potential energy. This is only applicable when essential boundary conditions 

are specified at both ends. Suppose if natural boundary conditions are specified; that is, 



moments and shear forces are specified, we need to substitute those values and simplify 

the functional that we have seen earlier. 
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Natural boundary conditions V and M are specified at either end. Please note that the 

equation so far we have derived, V is internal shear and M is internal moment. However, 

in practice, nodal forces and moments are prescribed at beam ends rather than internal 

shears and internal moments. So, we should note down the relation between the nodal 

forces and moments and internal shears and internal moments. If you go back and see the 

sign convention that we started out with – this is what we started out with, the first figure 

shows the sign convention for nodal degrees of freedom, that is, transverse 

displacements and rotations. Also, that is the sign convention for applied forces and 

moments; whereas, internal moments and internal shear figures are given – the second 

figure shows for internal moment, third figure is internal shear. 

If you compare the sign conventions there, the applied moments at the left-hand end is in 

opposite direction to the internal moment at the left-hand end; whereas, at the right-hand 

end, the applied moment is in the same direction as internal moment. Similarly, at the 

right-hand end, the applied force is in opposite direction to internal shear; whereas, at the 

left-hand end, internal shear is in the same direction as applied force. So, noting these 

relations between internal moments, internal shears and applied forces and moments… 
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Because of different sign convention for applied forces and internal moments, as 

illustrated in the figure below, the applied end moments and forces are related to internal 

moments and shears as follows. These are the quantities that we need to substitute into 

the equivalent functional that we have earlier and simplify it further to get the 

corresponding potential energy functional, when natural boundary conditions are 

specified. 
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Substituting what are the values of v at x1, x2; what are the values of M at x1, x2, we get 

this relation. Here, please note that F1, F2, M1, M2, acts like constants as far as 

variational operator is concerned. So, the terms: variation of V times F and variation of 

derivative of V with respect X times M – those terms can be grouped together. 
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The total functional can be written in this manner. So, the potential energy functional for 

beam bending problem looks like this. The functional is known as potential energy for 

beam bending. The first term in the functional is nothing but bending strain energy. The 

terms in the functional are usually given by the following physical interpretation. 
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The first term is beam bending energy, second term is work done by the distributed load 

q, and the third term is work done by the applied end loads, which is given by rotation 

times moment at both ends, plus transverse displacement times force at both ends. So, 

the potential energy can be written as strain energy minus work done by the applied 

forces. 

What we have done is, we have looked at governing differential equation for a beam 

bending problem. Starting with governing differential equation, we have derived 

equivalent variational functional or equivalent functional or potential energy functional 

for beam bending problem. So, to proceed further, what we need to do is, we need to 

develop a finite element for beam formation, which we will continue in the next class. 


