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In the last class, we looked at derivation of finite element equations for four node 

tetrahedral elements is a part of three-dimensional elasticity, and as a part of that we 

looked at governing differential equations for three-dimensional elasticity problems. 

Also we looked at in detailed, the finite element equations for four node linear element 

for three-dimensional elasticity problems. In today’s class, let us look at eight node solid 

element which is also known as brick element, and also twenty node solid element with 

curved sides for solving three-dimensional elasticity problems. At the end we will also 

look at thermal prestress prestrain effects, how to consider all these into account when 

we are solving three-dimensional elasticity problems, in fact any elasticity problem. And 

let us let me, briefly review what we have done in the last class, before we proceed with 

solving or before we proceed with formulating finite element equations for eight node 

solid element.  
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So, planar and axisymmetric elasticity problems that consider in the earlier lectures are 

special case of general three-dimensional elasticity theory. And general the general case 

of three-dimensional stress analysis shall be discussed in the next few lectures. 
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That is what we discussed in the last class. Three dimensional elasticity problems 

involve six stress components also six strain components. What are this six stress 

components? The first three components are normal stress components; the last three are 

the shear stress components. The primary unknowns are three displacements along x, y, z 

directions and the stress vector looks like this. The strain vector looks like this. 
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Assuming, small strain displacement relationship can be written as follows. Assuming 

linear elastic material behavior stresses and strains are related through this equation, 

where, C is the constitutive matrix for isotropic material. 
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Isotropic material the constitutive matrix C is as follows, where E and v are Youngs 

modulus and Poissons ratio. Then, before we actually derive finite element equations for 

any kind of element we need to know what is potential energy functional. 

(Refer Slide Time: 03:52) 

 



In the last class, we have seen potential energy functional for three dimensional elasticity 

problems looks like this, where u is strain energy w s is work done by the applied forces 

and also we looked in detail how to calculate the strain energy. 
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Evaluating, this integral which is going to be volume integral and work done by the 

applied forces is given by the traction components multiplied by a displacements, along 

that particular direction integrated over the surface on which traction is applied. If 

specified concentrated forces or body forces are present. Work done by the 

corresponding forces can also be computed in the similar manner. This is what, we have 

seen in the last class. Also last class we have seen how to calculate principle stresses 

once we solve for the displacements, find strains and stresses at the points that we are 

interested. Later using the six stress components, we can calculate principles stresses for 

subsequent use in the failure criteria. 
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With that, let us start deriving finite element equations for eight node hexahedral or brick 

element. This is an eight node hexahedral element and similar to that we already did for 

four node tetrahedral element. The element equations can easily be derived by using 

isoparametric mapping concept and this actual element we are going to map it onto a 

parent element, which is going to be a cube having dimension 2 by 2 by 2. That is, x axis 

goes from minus 1 to 1, t axis goes from minus 1 to 1, r axis goes from minus 1 to 1. 

Parent element looks like this. Origin is located at the center, that is the center of this 

cube is located at s is equal to 0 or r is equal to 0, s is equal to 0, t is equal to 0. With that 

understanding three dimensions of this cube 2 by 2 by 2. With that understanding with 

the location of origin that is, at the center we can easily find what are the coordinates of 

various nodes.  

For example, node 1 is located at r is equal to minus 1, s is equal to minus 1, t is equal to 

minus 1.Similarly, node 2 is located at r is equal to 1, s is equal to minus 1, t is equal to 

minus 1, node 3 is located at r is equal to 1, t is equal to 1, r is equal to 1, s is equal to 1, t 

is equal to 1 and node 4 is located at r is equal to minus 1, s is equal to 1, t is equal to 

minus 1. Node 5 is located at r is equal to minus 1, s is equal to minus 1, t is equal to 1. 

Node 6 is located at r is equal to 1, s is equal to minus 1, t is equal to 1. Node 7 is located 

at r, s and t is equal to 1. Node 8 is located at r is equal to minus 1, s and t equal to 1. 
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With that understanding, we can make a note of the nodes in the parent element and their 

location as given here. Similar to four node tetrahedral elements are for that matter, the 

elements that we look for planar and axisymmetric elasticity problems. The trial 

solutions are written in terms of finite element shape functions for parent element. 
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Trial solutions u, v, w displacement component along x direction, displacement 

component along y direction, displacement component along z direction can be written 



in terms of finite element shape functions at all. The eight nodes of this eight node 

hexahedral element or eight node brick element the matrix consisting of finite element 

shape functions is denoted with letter N. All the displacement components are put 

together in a vector d. Trial solution can be written as N transpose d, the shape functions 

for this eight node hexahedral or eight node brick element can easily be obtained using 

Lagrange Interpolation formula. That we already looked at when we are deriving shape 

functions for two dimensional elements. Only difference is going to be, we need to apply 

Lagrange Interpolation formula in three dimensions. Using Lagrange Interpolation 

formula in three dimensions the shape functions for the parent element which are 

required can be obtained. 
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This is the parent element applying Lagrange Interpolation formula. We can write shape 

function corresponding to node 1. In this manner, N 1 is equal to r minus r 2, s minus s 4, 

t minus t 5 divided by r 1 minus r 2 times s 1 minus s 4 times t minus t 5. By substituting 

the nodal coordinates r 1, r 2, s 1, s 4, t 1, t 5, we get shape function corresponding to 

node 1 as 1 over eight, 1 minus r, 1 minus s, 1 minus t. It is just application of Lagrange 

Interpolation formula in three dimensions. 
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Similarly, shape functions for other nodes can be written, we can write all the eight shape 

functions to get that in a compact form in this manner, where, N i is shape function 

corresponding to eighth node, r i is the nodal coordinate r i, s i, t i are the nodal 

coordinates of that particular node in the parent element coordinate system, where, r i, s 

i, t i are the coordinates of eighth node in the parent element. Once, we know the shape 

function expressions for all the eight nodes, we can easily write the trial solutions in 

terms finite element shape functions. 
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Next is Isoparametric mapping, this is similar to the earlier elements that we have seen. 

Except, there are eight nodes, eight shape functions in the corresponding x coordinates of 

all the eight nodes, x is equal to N 1 x 1 plus N 2 x 2 plus N 3 x 3 and so on. N 8, x 8 all 

this can put together in a matrix and vector form in this manner. Similarly, y can be 

written in terms of finite element shape functions and the nodal coordinates of all the 

nodal y coordinates of all eight nodes. Similar, z can be written as finite element shape 

functions and z coordinate of all the eight nodes. Once, we have this we can easily derive 

since, all the shape functions are functions of r s t, we can easily find what is partial 

derivative of x with respect to r s t, similarly y with respect to r s t and z with respect to r 

s t for subsequent calculations for strains. 
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Strain displacement relationship, the partial derivatives of u, v, w are evaluated using 

chain rule, as was done for four node tetrahedral element. For example, derivatives of u 

are written as follows, this equation gives partial derivatives of displacement component, 

t along x direction with respect to r s t and partial derivatives of displacement along x 

direction with respect to x y z. This is where we required finding partial derivatives of x 

with respect to r s t, y with respect to r s t, z with respect to r s t. Once, we know partial 

derivatives of x with respect to r s t, y with respect to r s t and z with respect to r s t, we 

can easily find what is J, which is Jacobian matrix.  
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This is the inverse relation derivatives of u that is, displacement component along x 

direction with respect to x, y, z can be computed by inverting matrix J. This gives the 

inverse relationship of the previous equation. Here, substituting partial derivatives of u 

with respect to r s t, we know u in terms of finite element shape functions. Since, finite 

element shape functions are in terms of r s t, we can easily take derivatives of finite 

element shape functions with respect to r s t. We can easily find what is partial derivative 

of u with respect to r s t in terms of finite element shape functions. 
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Substituting all that information we get this, which can be compactly written using B u x, 

B u y, B u z. This gives partial derivatives of displacement along x direction with respect 

to x, y, z. Similar relations can also be developed for partial derivatives of displacement 

component along y direction, z direction with respect to x,y,z. 
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These two equations gives derivatives of v with respect to x,y,z, w with respect to x,y,z, 

which is compactly written in terms of B v x, B v y, B v z, B w x, B w y, B w z. Now 

obtained all the quantities that are required for calculation of strains. Strains requires 

derivatives of displacement components with respect to x, y, z. Using the definition of 

strain vector, the strains can now be expressed in terms of nodal displacements by 

choosing appropriate rows from the above matrices. 
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First, definition of strain epsilon x is equal to partial derivative of u with respect x, 

epsilon y is equal to partial derivative of v with respect to y, epsilon z is equal to partial 

derivative of w with respect to z. Similarly, gamma x y partial derivative of u with 

respect to y plus partial derivative of v with respect x, gamma y z partial derivative of v 

with respect to z, partial derivative of w with respect to y, gamma z x partial derivative 

of w with respect x, partial derivative of u with respect to z, this entire vector can be 

written or rearranged in the manner that is shown on the right hand side of the equation. 
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Once we have the right hand side, we can now replace that with appropriate rows in the 

equations that we have already derived in terms of Bs, B u x, B u y, B u z, B v x, B v y, 

B v z, B w x, B w y, B w z in this manner, which can be compactly written as B 

transpose d where, B is strain displacement matrix. This is how we can calculate these 

strains for this eight node hexahedral element. Now, we are actually ready to get the 

elements stiffness matrix by substituting strains into strain energy expression, we can get 

this, where k is the element stiffness matrix. 
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We can see here for this eight node hexahedral element strain displacement matrix B is 

not a constant. We need to adopt numerical integrations came to evaluate this element 

stiffness matrix. The individual terms in k matrix must be evaluated using numerical 

integration like Gaussian quadrature. Now, let us briefly look at numerical integration in 

three dimensions, which helps us to evaluate these kinds of integrals. 
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The product Gauss integration formulas for three dimensional problems can be written in 

a manner similar to that for two dimensions. Except that, we need to do whatever we 

have done for two dimensions, we need to extend by one more dimension to get 

integration formulas for three dimensional case. Integral something like this I is equal to 

minus 1 to 1, minus 1 to 1, minus 1 to 1, integral f d r, d s, d t. Basically, stiffness matrix 

element stiffness matrix the components of element stiffness matrix usually will be in 

this form. This can be evaluated or numerically approximated using Gaussian quadrature, 

the way it is shown on the right hand side of the equation, where r i, s i, t i are gauss 

points and w i, w j, w k are the weights. r i, s i, t i gauss points. l, m, n are number of 

integration points along r direction, s direction, t direction. These need not necessarily be 

same depending on the order of polynomial along r, s and t directions. We can select 

different values for l, m and n. 
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The total number of integration points are going to be l times, m times, n and w i, w j, w 

k are the Gauss weights and f as a function of r i, s i, t i, s value of integrand, at point r i, 

s i and t i. Now the important thing is how to know the locations and weights. The 

locations of gauss points in each direction and corresponding weights are same as those 

for one dimensional problems that, we are already familiar with. Let us look at a Gauss 

weights at each Gauss point and corresponding locations of the Gauss points. If we try to 

adopt 2 by 2 by 2 integration, if we select 2 number of integration points along r 

direction, 2 number of integration points along s direction, 2 integration points along t 

direction.  
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That is 2 by 2 by 2 integration formula, 2 by 2 by 2 integration formula point locations 

integration. They are going to be eight integration points 2 times, 2 times, 2 is eight. So, 

they are going to be eight integration points. The corresponding locations of these 

integration points, what is the r coordinate, s coordinate, t coordinate? The weight at each 

of these integration points is indicated in the table. This is just arrived at using the 

information that we have already for one dimensional problems, which we looked at in 

the earlier lectures. This is how we can evaluate numerical integration for three 

dimensional cases and using this kind of formula, we can evaluate individual terms in the 

element stiffness matrix. 
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Equivalent nodal forces, this is similar to four node tetrahedral element that T x, T y, T z. 

With the components of traction surface forces that are applied along x, y, z directions. 

Work done by these forces is given by the traction components multiplied by the 

corresponding displacement components integrated over the surface on which the forces 

are applied. This can be further written compactly in the manner that is shown on the 

right hand side of the equation d transpose Q T where, Q T is equivalent nodal load 

vector. 
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This is going to be a surface integral for eight node hexahedral element. The integrations 

can be performed numerically similar to that; we already looked at in the earlier classes 

for evaluating integrals in two dimensions. Similar kind of expressions can be written for 

other kinds of applied forces body forces and other forces. We looked at how to get 

element stiffness matrix for eight node hexahedral element also, how to evaluate 

equivalent nodal force vectors. With this we can actually assemble element stiffness 

matrix for each of the elements in the finite element discretization for the particular three 

dimensional elasticity problems. We can also assemble the equivalent nodal load vectors 

for the particular loading. Then we can assemble using these element equations we can 

assemble global equations and applying appropriate boundary conditions.  

We can get the reduced equation systems solve for the unknown displacements. 

Subsequently, we can use strain displacement matrix. We can solve for strains and 

stresses and then we can do all kinds of post processing of stresses using principle 

stresses that we discussed in the last class, all that procedure is similar to that we have 

seen for two dimensional problems. Let us look at the other element that is twenty node 

isoparametric solid elements. Before, we proceed let me summarize this four node 

tetrahedral element is counter part of three node linear triangular element. The eight node 

hexahedral element is counter part of four node elements, for two dimensional problems 

and twenty node isoparametric element is going to be counter part of eight node 

serendipity element. 
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This is a twenty node isoparametric element with curved edges. Similar to that we have 

seen so far element equations are derived using isoparametric mapping concept. For that 

we require a parent element. Parent elements for this twenty node element looks like this 

where, center of element are located at the center of the q, which is having dimensions 2 

by 2 by 2. With that understanding we can easily write the locations of all the nodes with 

respect to the parent coordinate system and once we have that information we can write 

the trial solution. 
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Trial solution written in terms of finite element shape functions .This is this equation is 

similar to that, we have seen earlier except that number of nodes increased. Matrix 

consisting of finite element shape functions is denoted with letter N. The displacement 

component at all the nodes is denoted with letter d. It is compactly written as N transpose 

d, the shape functions for the parent element can be obtained using similar kinds of 

procedures that we adopted for obtaining shape functions for eight node serendipity 

element for two dimensional problems. Here, directly the expressions are given.  
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Shape functions for parent element are of serendipity type and can be written as follows. 

For corner nodes we cannot write one general expression, similar to that we have done 

for eight node hexahedral element. The shape functions expressions are going to be 

different or they look different for corner nodes mid side nodes. We need to write those 

separately for corner nodes. That is nodes 1, 3, 5, 7, 13, 15, 17, 19 for the node 

numbering that are given or that is shown in the figure there. For corner nodes the shape 

function expression looks like this, where r i, s i, t i are the coordinates of node in the 

parent element. 
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For mid side nodes, that is nodes which are located at or nodes whose s coordinate is 0. r 

i the nodal coordinate r coordinate of that particular node or mid side nodes, whose r 

coordinate is plus or minus 1, t coordinate is plus or minus 1, s coordinate is 0, such 

nodes that is node 4,8,16, 20. For these nodes the shape function expression is given by 

this. 
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Similarly, for mid side nodes whose t coordinate is 0 and r coordinate is plus or minus 1, 

s coordinate is plus or minus 1. That is nodes 9, 10, 11, 12. Shape function expression is 

given by this. 
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For mid side nodes whose r coordinate is 0, s coordinate, t coordinate are plus or minus 

1. That is nodes 2, 6, 14, 18 is given by this. Please note that, these expressions are valid 

only for the node numbering that is shown in the figure here. If you adopt a different 

node numbering then these expressions are going to be different and again these 

expressions are developed using the serendipity. That, we adopted similar to that when 

we are deriving shape functions for serendipity element, eight node serendipity element 

for two dimensional problems.  
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Once we got all the finite element shape function expressions, we can write 

isoparametric mapping for twenty nodded element. Similar to that we did for earlier 

elements except the dimensions of this vector are going to be increased. Because, there 

are 20 nodes. Once, we have isoparametric mapping expressions we can easily find 

partial derivative of x with respect to r s t, y with respect to r s t, z with respect to r s t for 

subsequent use in strain displacement relations. 
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Strain displacement relationship partial derivatives u, v, w are evaluated using chain rule 

as was done for tetrahedral or hexahedral element. These equations looks or these 

equations are similar to that we have seen for other elements earlier. Except that some of 

the dimensions may be different, where J is Jacobian matrix. 
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The inverse relation is given by this. 
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This equation gives derivatives of u with respect x, y, z, which can be compactly written 

similar to that what we did for eight node hexahedral element, except that the dimensions 

of matrices are going to be more. 

(Refer Slide Time: 35:09) 

 

Similar derivatives for v and w can be written or expressed as follows. Once we have all 

this information using the definitions of strains in terms of displacements they can easily 

substitute these quantities. Get this strain displacement matrix or strain displacement 

relationship for twenty node isoparametric element. 
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Strains now can be expressed in terms of nodal displacements by choosing appropriate 

rows from the above matrices. Strain definition, in terms of displacement components 

which can be rearranged as shown on the right hand side. Now plugging in or selecting 

the appropriate rows from the previous equations we can get this. 
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Basically, all these details are similar to that we already looked for eight node hexahedral 

element. Except that dimensions of matrices and vectors are going to be longer. Strain 

can be compactly written as B transpose d. 
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Substituting this definition and the strain energy expression, we get element stiffness 

matrix, where k is element stiffness matrix defined like this. The individual terms in k 

matrix must be evaluated using numerical integration like Gaussian quadrature. Because, 

B matrix is not a constant and only thing is size of the k matrix you need to keep in mind 

here. There are three degrees of freedom, at each node there are twenty nodes. Size of 

stiffness matrix is going to be 60 by 60 because, there are twenty nodes and at each at 

each node there are three degrees of freedom. So, we got element stiffness matrix. 
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Next is equivalent nodal force vector or before we proceed there numerical integrations. 

The previous element stiffness matrix, we need to evaluate using numerical integration. 

Quickly, let us go through numerical integration in three dimensions similar to that we 

already looked for eight node hexahedral element. Product Gauss integration formulas 

for three dimensions can be written in a manner similar to that for two dimensions. Each 

component of element stiffness matrix can be evaluated using this formula, where 

definitions of various quantities are given. 
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This is just for completeness; I am showing you numerical integration three dimensions 

again. 
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For 2 by 2 by 2 integration, the coordinates and weights of various integration points are 

given. Here, adopting this kind of formula we can evaluate each component of element 

stiffness matrix. 
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Next is equivalent nodal force vector if T x, T y, T z are the components of tractions 

along x, y, z directions. Work done is given by this integral which can be compactly 

written as d transpose Q T, where Q is the equivalent nodal load vector. 
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Integration must be performed to evaluate this numerically and similar expressions can 

be written for other kinds of forces acting on other faces. Once again element stiffness 

matrix for twenty node isoparametric element is going to be 60 by 60 from each element. 

And also equivalent nodal force vector length 20. That is vector is going to have 20 



components. Procedure wise, the dimensions of matrices and vectors are going to be 

longer, other than that conceptually the procedure for assembling the element matrices 

and vectors. Getting the global equation system and applying the essential boundary 

conditions and getting the reduced equation system. Solving for the unknown nodal 

displacements and calculations of strains stresses all those details are similar to that for 

the problems that we looked at earlier. 
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Let us look at prestressing initial strains and thermal effects. How to handle this? A 

uniform temperature change in an elastic solid produces uniform expansion that we 

already know. Strain associated with temperature change delta T is given by this. Only 

normal components will be non zero shear components are going to be 0. This is a strain 

associated with temperature change of delta T in an elastic solid. For plane stress and 

plane strain case is given by this. 
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Plane stress and for plane strain case, in all these equations alpha is coefficient of 

thermal expansion. Delta T is the change in temperature, n u is the Poissons ratio. This is 

how we can calculate strain associated with temperature change. Prestressing implies 

presence of some unknown initial stress in the body. Basically that is, what we are going 

to do, when we are actually analyzing prestress concrete. Prestressing implies presence 

of some unknown initial stress in the body, the stresses the corresponding stresses or 

prestressing.  
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The stresses corresponding to this prestress are denoted with sigma naught and taking 

care of these prestressing prestresses. The strain stress strain relationship can be written 

like this. The actual stress that is developed in the body is going to be dependent only on 

the strains excluding the strains. That is associated with change in the temperature or 

initial strains. Stresses are going to be given by C times epsilon minus epsilon naught 

plus initial stresses sigma naught, where C is the constitutive matrix. So, this is how 

stresses in a body subjected to temperature change or initial strains can be calculated. 
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Using this definition strain energy in the presence of initial stresses and strains can be 

written like this. Only difference here is instead of epsilon, epsilon minus epsilon naught 

is used in the first expression, second one is coming from the work done by the strain 

energy, because of developed strains, in addition to initial strains and initial stresses. 

This can be further simplified and we get this all terms and we know that by 

differentiating strain energy we get element equations. 
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Since, element equations are obtained by differentiating strain energy with respect to the 

nodal variables, which are going to be nodal displacements. The constant terms will not 

have any influence and can be dropped. Whatever constant terms are there in the 

previous equation they will all drop off, when we take derivatives with respect to the 

nodal displacements or nodal variables. Finally, we are going to get this one before we 

do differentiation; we can remove the constant terms or we can take derivatives of 

constant terms automatically they are going to be 0. 
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By taking the strain energy expression without constant terms, before we proceed 

actually we need to substitute the definitions of strain or strain in terms we need to 

express strain in terms of nodal displacements. Finite element approximation of nodal 

displacements N transpose d strains, B transpose d. Substituting this into the previous 

equation in which constant terms are avoided, we get this which can be written in a 

matrix and vector form in this manner, where each of the terms are defined like this.  
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Q epsilon naught, Q sigma naught are due to initial strains, due to the presence of initial 

strains or stresses. The element equations are obtained by differentiating the previous 

equation strain energy u with respect to the nodal displacements or nodal parameters, we 

get this equation and you can see this equation. 
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It can be notice that stiffness matrix, k is similar to that we already looked at in the 

earlier cases or stiffness matrix is same as before, except that the presence of initial 

strains and stresses or temperature changes do not have any effect on the element 



stiffness matrix. That is what we can notice, also all these effects that is initial strains or 

stresses and temperature changes are incorporated into the nodal force vectors or nodal 

load vectors. We can proceed similar to that we already discussed for other kinds of 

elements for various kinds of elements that we discussed during this lecture. Similar to 

that what we can do is, with this definition of element stiffness matrix and force vectors, 

nodal load vectors we can assemble.  

In case, initial strains or stresses are present or if there is change in temperature we can 

assemble the element equations as usual, and also the equivalent nodal load vectors can 

be assembled using the equations that we just saw, that we have just seen the equation 

using the Q epsilon naught, Q sigma naught equations. And get the element equations 

and using nodal connectivity we can assemble the global equations, and apply 

appropriate essential boundary conditions, and solve for the nodal displacements, and do 

all kinds of post processing. So, this completes three-dimensional elasticity problems 

after solving for nodal displacements, element stresses can be calculated using the last 

equation that is shown.  


