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Last class we have seen, using a variational methods, few examples by taking various 

forms of approximations like quadratic approximations, cubic approximations, quartic 

approximations of the trial solutions, and we also looked at how to solve an eigen value 

problem. 

In today’s class, what we will do is we will solve the same examples which we have 

done yesterday, using modified Galerkin method. 

(Refer Slide Time: 00:46) 

 

So, this is the problem statement. Obtain a linear approximate solution of the problem 

using modified Galerkin method. And you are given the differential equation, and also 

the problem domain. And this is a second order differential equation. So, you can guess 

you require two boundary conditions to solve this problem. The two boundary conditions 

that are given are here. And you can easily check using the thumb rule that I already 



gave you earlier, that the first boundary condition turns out to be the essential boundary 

condition and the second boundary condition turns out to be a natural boundary 

condition. 

Once again I will repeat. This is a second order differential equation. So, those boundary 

conditions of order 0 to p minus 1; here p minus 1 is 0. So, zeroth order boundary 

conditions are essential boundary conditions, and those boundary conditions of order p to 

2 p minus 1 are natural boundary condition. And if you check here, the order of 

differential equation is 2. So, 2 p is equal to 2. So, p is equal to 1. 

So, those boundary conditions of order 1 are natural boundary condition. So, that way 

you can check the second boundary condition is natural boundary condition. So, here we 

are going to use modified Galerkin method.  

(Refer Slide Time: 02:13) 

  

So, you know, the basic weighted residual statement for any weighted residual method is 

this. Multiply the given differential equation with a weight function, integrate over the 

problem domain, and equate it to 0. The weight function depends on the method that you 

choose. And if it is a least square weighted residual method, it is partial derivate of e 

with respect to the unknown coefficients. And if it is collocation method, it is direct delta 

function. And if it is a Galerkin method, weight function is going to be partial derivative 

of coil solution with respect to the unknown coefficients. 



So, before we proceed further, what we need to do is, we look at the any higher order 

derivative terms, and we will use integration by parts and reduced to the lower order 

terms. So, if you see this equation, the first term is having second derivative of u. So, we 

can use integration by parts on the first term; that is, W times minus second derivative of 

u with respect x square, you apply integration by parts on the term and it gets simplified 

to what is shown there. 

((No audio from 03.26 03.32)) 
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And you may think that why do not we use one more time integration by parts, but it is 

not going to help us anywhere. If you see why, any further integration by parts will start 

increase the order of derivatives on w, weight function. 

So, actually the purpose is we want to use integration by parts, to balance or whatever 

derivatives, a higher order derivatives are there on the trial function , you want to transfer 

it to the weight function, but not to increase the order of derivative on the weight 

function. So, any further integration by parts will start to increase order of derivatives on 

weight function .Therefore, there is no advantage in integration by parts any further. 

Using above equation as a basic criteria for Galerkin method, it is clear that only first 

order derivatives of u are required. So, you require only first order derivative of u. So, 



you can start with a linear trial solution. Thus using this formulation, even a linear trial 

solution can be used if desired. 

And if you recall, this problem is solved using a variational method, and there we 

minimum trial solution, minimum order of trial solution we have taken is, second order; 

that is, we started out with a quadratic trial solution. And here we can even go for linear 

trial solution. 

(Refer Slide Time: 03:32) 

So, the linear trial solution that is assumed is here. u is a naught plus a 1 x, and rest of the 

procedure is similar. So, what you need to do is, you need to make sure this trial solution 

is admissible; that is ,you need to substitute the essential boundary condition into this and 

reduce the number of unknown coefficients. So, what is the essential boundary condition 

that is given here, u evaluated at x is equal to 0. 

(Refer Slide Time: 05:28) 

 

So, to satisfy the essential boundary condition u evaluated at x is equal to 0 is 0, if you 

substitute that condition u, it results in a naught equal to 0. So, the trial solution becomes 

u is equal to a1x. So, there is only one unknown coefficient to be determined. And you 

know, for Galerkin method, weight function is partial derivative of u with respect to the 

unknown coefficients. So, it turns out that weight function is equal to x.  

((No audio from 05.56 to 06.02))  



Substituting into the modified Galerkin criteria, whatever equation we have earlier and 

noting that now, you have W1 is equal to x. So, W 1 value at x is equal to 1 is going to 

be 1, W 1 value at x is equal to 0 is going to be 0. And also you are also given natural 

boundary condition for this particular problem, that is derivative of u with respect to x 

evaluated at x is equal to 1 is 1. 

So, you plug in all this information into the previous equation. The first equation is 

reproduced, but our equation we have earlier, that is reproduced; the first 1, and into that 

equation, these all information is substituted; that is, W 1 evaluated at x 1 is equal to 1,W 

1 evaluated at x is equal to 0 is 0, derivative of u evaluated at x is equal to 1 is 1. All this 

information is substituted at (( )) and carrying out the integration, you will get one 

equation, and one unknown. You can solve for the unknown coefficient a 1. 

So, once you get unknown coefficient a 1, you can back substitute this a1 into the trial 

solution, and then you get the approximate solution for this problem.  

((No audio from 07.14 to 07.20)) 

So, approximate solution for this problem is u x is equal to a 1 value which is 9 over 8 

times x. ((No audio from 07.31 07.38)) 
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And now see, how approximate solution matches with exact solution, by plotting the 

exact solution verses approximate solution .We have already looked at this problem 



earlier using a variational method, and it is mentioned at the time, the exact solution for 

this problem is, u is equal to 180 over 139 x minus 21 over 139 x square. So, that exact 

solution and approximate solution you can over lay on each other. This is how they 

match. And also you can take the derivative of the approximate solution and derivative 

of the exact solution. You can plot them. 

And since, we started out with a linear trial solution; you can see there is a large error in 

the derivative of the approximation; whereas, the approximation itself is fairly accurate. 

And if you want to further reduce the error on the derivative of the approximate solution, 

what you need to do is you can go and start with or you can start with a higher order trial 

solution; that is you can take a quadratic or cubic or higher order. 

(Refer Slide Time: 09:00) 

 

Now, let us look at what is, what are the some points related to this technique and this 

problem. Considering the simplicity of the trial solution, results are not too 

disappointing; means whatever results you have seen, the approximate solution is itself 

good, but the derivative of approximate solution has some error. Solution itself is not too 

bad; however, significant error in its first derivative, that is what you observed, and this 

is generally the case with most approximate solutions. 

Usually approximate solutions get worse as the order of derivative is increased. 

Whatever we have seen there, we plotted only the first derivative, but if you again take 



one more derivative, error you will see much more than what you have error in the first 

derivative. 

(Refer Slide Time: 10:02) 

 

And now we look the next problem. This problem also we solved using variational 

method, and what we will do is we will solve the same problem using Galerkin method, 

modified Galerkin method. The problem statement is given here. Second derivative of u 

with respect to x square plus x square is equal to 0, problem domain is 0 to 1, essential 

boundary condition u evaluated at x is equal to 0 is 1, and natural boundary condition 

derivative of u evaluated at x is equal to 1 plus 2 times u evaluated at x is equal to 1 is 1. 

And this problem, exact solution is already given to you. And the exact solution for this 

problem is u is equal to 1 minus 1 over x 1 over 6 x minus 1 over 12 x power 4. 

((No audio from 11.08 to 11.13))  
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So, now let us go through the procedure. First we need to select trial solution and make it 

admissible. To make trial solution admissible, what we need to do is we need to 

substitute essential boundary condition and find one of the coefficients, unknown 

coefficient if it is possible. So, the admissible trial solution for this problem is 1 plus a 1 

x plus a 2 x square. Once again, I want to emphasize here, admissible trial solution is a 

trial solution which satisfies essential boundary conditions. 

So, you can check by substituting x is equal to 0 in this equation, whether it satisfies 

essential boundary conditions or not. And now once we got the admissible trial solution, 

you know, a weight functions for Galerkin method are defined like this; that is derivative 

of u with respect to the unknown coefficient is what is weight function. And here you 

have two unknown coefficients. 

One is a 1, another is a 2. So, you get two weight functions. W 1 is derivative of u with 

respect to a 1, and W 2 is derivative of u with respect to a 2. And w 1 turns out to be x 

and W 2 turns out to be x square. And what is the Galerkin weighted residual statement? 

It is the given differential equation is multiplied with a weight function, integrated over 

the problem domain, equated to 0. And again you need to identify which term is having 

higher order derivatives. And use integration by parts and reduce the order of derivative 

on that term and transfer the derivative to weight function. 
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As I mentioned in the previous problem, you need to be very judicious in deciding how 

many times you want to use integration by parts because we do not want to differentiate 

weight function also too many times. 

(Refer Slide Time 11:13) 

So, now using integration by parts, it results in this one. That is integration by parts is 

applied only on the first term. And now, we already know what W 1 is, and what W 2 is. 

And W 1, if you recall, it is x. W 2 is x square. So, what I can do is, both are functions of 

x. So, I am here writing as w i, w i is i takes values 1 and 2. Both W 1 and W 2 evaluated 

at x is equal to 0 or 0 and w 1 evaluated sorry w i, where i takes values 1 and 2 evaluated 

at x is equal to 1 is equal to 1. And the natural boundary condition is already given there 

in the problem statement. 

So, that is same thing is reproduced here. So, all this information; that is w i evaluate at x 

is equal to 0, W i evaluated at x is equal to 1 is 1 and the natural boundary condition. 

You can substitute all this information into the first equation that results in the last 

equation. Substitute trial solution into the weighted residual to get system of equations. 

((No audio from 14:37 to 14:44 and 14.48 to 14.51)) 
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So now, i taking value 1 results in this equation. i takes values 1 and 2 here, because we 

need to determine two coefficients which is a 1 a 2. So, i takes values 1 and 2. So, this is 

the equation corresponding to i taking value 1, and this can be simplified and which 

results in this equation. 

And when i takes value equal to 2, you get this equation .That is you need to substitute 

W 2 and the corresponding trial solution and derivative of trial solution and which 

simplifies to this equation. Here you can see there are two unknowns to be determined a 

1 and a 2 and two equations. So, you can solve these 2 equations simultaneously and get 

the coefficients a 1 and a 2. 
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Solving two equations simultaneously results in a 1 is equal to minus 1 over 10, a 2 is 

equal to minus 3 over 20. 

Now, you know what you need to do with these coefficients. You need to substitute back 

these coefficients a 1 a 2 into the admissible trial solution we started out with. What is 

admissible trial solution we started out with? It is u is equal to 1 plus a 1 x plus a 2 x 

square. So, you substitute a 1 is equal minus 1 over 10 and a two is equal to minus 3 over 

20, you get the approximate solution. 

And if you compare this solution whatever you obtained using modified Galerkin 

method, this is exactly same as what you already obtained using variational method or 

Rayleigh-ritz method. And this is expected because, if a particular problem can be solved 

using these two methods starting with the same order of trial solution, you will get 

exactly same solution. If you do not commit any mistakes, you should get exactly and 

this is one way of checking your procedure, whether you are procedure that you adopted 

is correct or not. 

((No audio from 17.18 to 17.24)) 

And now let us look at terms to summarize before we look at what is the difference 

between or what is how can you differentiate between approximate solution techniques 

and finite element method, before that let me summarize what we have done so far. 



We looked at various methods; weighted residual methods, we looked at least square 

weighted residual method, collocation method and also Galerkin method basic 

formulation, Galerkin method modified formulation and also variational method. And we 

also looked at some problems, what the advantages of these techniques, we illustrated 

through some examples. So, now, we can just see before we proceed to the finite element 

method, let us make a note of what are the differences between the approximate solution 

techniques and finite element method. 

(Refer Slide Time: 18:44) 

 

Basically, finite element method is essentially an extension of classical approximate 

techniques. So, the difference between the two techniques; that is, classical 

approximation solution techniques and finite element method are as follows here. In 

classical techniques, as you already experienced, when you looked at the problems, in 

class techniques the trial solutions are defined over the entire solution domain. 

That is you started out, if you take a any problem, you started out with a trial solution; 

that is u is equal to a naught plus a 1 x plus a 2 x square and that whatever a trial solution 

you started out with is applicable for the entire solution domain or it is defined over the 

entire solution domain. 

Often this trial solution must include large number of terms to represent the solution 

accurately. This also you have experienced. As you increase the order of trial solution; 

that is, if you go from linear trial solution to quadratic trial solution or cubic and quartic, 



the solution accuracy increases. So, if for a particular problem if lower order trial 

solution is not is a not capturing the exact solution accurately, then we need to include 

large number of terms to represent solution accurately.  

(Refer Slide Time: 20:02) 

 

In finite element method, which we are going to see in a while, in finite element method, 

the solution domain is divided into finite number of elements and the trial solutions are 

defined over each element. By suitably combining these solutions, a complete solution 

for the entire domain is obtained. 

So, what we will we be doing is, we will be defining trial solution for each of the 

element separately, and once we solved for all the unknown coefficients, you will go 

back to each element, and then we will push process it; that is what this means, the 

second point. 

Since each element covers only a portion of solution domain, a lower degree polynomial 

can usually be used as trial solution over an element. That is we can use instead of going 

for quadratic polynomial you can use linear polynomial. 



(Refer Slide Time: 21:10) 

 

In classical methods, the unknown coefficients in the trial solution do not have any 

physical meaning. That is, this a naught a 1 a 2 whatever you assumed in the classical 

methods for trial solution; those coefficients do not have any physical meaning. They are 

just mathematical quantities, which when substituted into the assumed trial solution give 

approximate give an approximate solution. ((No audio from 21.39 to 21.46)) 
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In finite element method, the polynomial coefficients are defined in terms of unknown 

solutions at key points over an element called nodes. We will see this more details of it 



in a while. So, the difference between classical approximate techniques and finite 

element method is the polynomial coefficients are expressed in terms of nodal values in 

finite element method. So, this physical nature of unknown parameters makes it very 

easy to satisfy essential boundary conditions. ((No audio from 22.26 to 22.34)) 

And why it is so simple if we do this kind of things in expressing polynomial coefficients 

in terms of nodal values? All that one has to do is to set the corresponding nodal 

parameter equal to the value specified by the essential boundary condition. 

So, this is a why it is very fairly easy to apply essential boundary conditions in finite 

element method. 

(Refer Slide Time: 23:00) 

 

Now, what we will do is we will take one example, we will solve this or this concepts 

whatever concepts that is; the difference between classical approximate techniques and 

finite element method to make this concepts clearer, we will be solving one dimensional 

second order differential equation with mixed boundary conditions. To make the 

concepts as clear as possible, the example that we are going to look, we are going to 

solve in slightly two different ways. 

The first approach is what may be considered as long hand approach and this approach 

gives you more insight into the solution process and clearly demonstrates that there is 

very little difference between classical approximate techniques and finite element 



method. So, we are going to follow two different approaches for solving same problem 

and then you will appreciate what is the transition between classical approximate 

techniques and finite element method. 

The second approach follows a more traditional way of organizing finite element 

equations. So, first let us look at the first approach. Again this boundary value problem 

you already looked at and the second order boundary value problem, domain is 0 to 1, 

and the boundary conditions are u evaluated at x is equal to 0 is 1. 

First derivative of u evaluated at x is equal to 1 plus two times u evaluated at x is equal 1 

is 1. It is a natural, it is turns out the first boundary condition is essential boundary 

condition and the second boundary condition is natural boundary condition. You can 

verify this easily, and by this time you know how to get equivalent functional using 

variational method. 

So, if you follow that procedure, equivalent functional turns out to be this one and before 

we proceed further, in finite element method, the first step is to select a trial solution. 

One of the key concepts in finite element method is that solution domain is divided into 

small parts called elements, and trial solutions are defined over these individual 

elements, assuming fairly lower order polynomials. For this problem, domain is divided 

into m number of elements and the length of each element is it can be different or it can 

be same.  

(Refer Slide Time: 26:07) 

  



So here, the problem domain 0 to 1 is divided into m number of elements, and each 

element is assumed to have two key points at the extreme ends of that element, the 

particular element. So, each element has two nodes, and there are n number of nodes, m 

number of elements. We will decide what a value of m and n later in a while and this is 

how the solution domain 0 to 1 is divided or discretized. 

So, now if you take a typical element and please note that each of these elements can 

have different lengths. So, there is no restriction that all the elements should be of same 

length. And now if you see a typical element, typical element looks like what is shown 

there in the second figure. 

Typical elements; typical element is connecting node i with i plus 1. The x coordinate of 

i th node is x i, x coordinate of i plus 1 th node is x i plus 1, length of this element is l i.  

(Refer Slide Time: 27:44) 

 

And let us see what the various quantities in this figure are. m is total number of 

elements, n is total number of nodes, x i is x coordinate of node i, i takes values from 1 to 

n. x 1 coincides with x is equal to 0, x n coincide with x is equal to 1, and l i is length of 

element I, and this is typical element reproduced again, and what we will do is we will 

assume a linear trial solution over this element. 
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Assume linear polynomial as a trial solution over this typical element. Trial solution can 

be written as u is equal to a naught plus a 1 x, and the domain of this element is going 

from x i to x i plus 1. And one of the basic concepts in finite element formulation is that 

trial solution is expressed in terms of unknown solution at the nodes. 

So, what we are going to do is we are going to replace this a naught a 1 with unknown 

solution at the nodes. These unknown nodal values act as parameters to be determined by 

various techniques that you already know; that is, variational or weighted residual 

methods. If unknown solution at node i is denoted using u i and the unknown solution at 

node i plus 1 is denoted using u i plus 1, what we can do is we can substitute, you can get 

two equations from the assumed linear polynomial trial solution; that is, u value at x is 

equal to i is u i, u value at x is equal to i plus 1 is u i plus 1. Substitute those two things 

into this equation, you get the first equation; that is, u evaluated at x is equal to x i is u i 

that is equal to a naught plus a 1 x i. Second equation u evaluated x is equal to x i plus 1 

that is u i plus 1 is equal to a naught plus a 1 x i plus 1. 

So, now you got two equations and you can solve these two equations for a naught and a 

1. Subtracting the second equation from the first gives you what is a 1, and substituting 

the a 1 that you just got by subtracting equation 2 from equation 1, it the first equation 

you can obtain what is a naught. So, that is what is shown here. 



(Refer Slide Time: 30:43) 

 

 Subtracting second equation from first results and what is shown there, and please note 

that x i plus 1 minus x i is equal to l I; length of the element is given by the special 

coordinate of i plus 1 th node minus special coordinate of i th node and substituting a 1 

into the first equation, gives us a naught. 

And now you determine what is a naught and a 1. What you do is you can substitute back 

this coefficients a naught a 1 into the trial solution; linear trial solution that we started 

out with, and then you need to some mathematical manipulations such a way that you 

bring the coefficient; the terms having coefficients u i and u i plus 1 separately. 
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So, first step is you substitute a naught a 1 into the linear trial solution that you started 

out with, and the second step is you group terms having u i as coefficient, u i plus 1 as 

coefficient separately. Whatever term which is coefficient of u i; that is called n i or that 

is defined as n I, and whatever coefficient that you have for u i plus 1 that is defined as n 

i plus and this n i and n i plus 1 are called shape functions or interpolation function and 

this is one way of deriving shape function expressions, but the other simple way of 

deriving this shape function f expressions is known lagrange interpolation technique. 

So, the equation u can be written in a compact manner like this. Once we define what is 

n i and n i plus 1, u is equal to n i u i plus n i plus 1 u i plus 1. If you look at this equation 

carefully, earlier whatever a naught is there, in that position you have u i, earlier 

whatever is there at are where u 1 is a 1 is there, the position at which a 1 is there, there 

at that position you have in this equation u i plus 1. 

And if you recall, linear trial solution is u is a naught plus a 1 x, and if a naught plus a 1 

x can be put in a matrix in a vector form like 1 times x in a vector and times a naught a 1 

in a another vector, and if you see this 1 x are linearly independent. Similarly this n i and 

n i plus 1 are linearly independent. 

Shape function should be linearly independent and also if you sum up this n i and n i plus 

1, they will be equal to 1. So, sum of shape function should be equal to 1, and also if you 

take derivative of n i with respect to x and derivative of n i plus 1 with respect to x, and 



if you add these two derivatives, that will be equal to 0. Sum of derivatives of shape 

function shape function is equal to 0. These are what are called consistency conditions 

which will be using at a later stage. 

(Refer Slide Time: 31:56) 

 So, now, coming to the equation u is equal to n i u i plus n i plus 1 u i plus 1, once again 

i want to bring your attention to this equation. If you recall for Galerkin weighted 

residual method, the weight function is defined as partial derivative of u with respect to 

the unknown coefficient. So, here earlier you have unknown coefficients as a naught a 1; 

whereas, now you have unknown coefficients here as u i u i plus 1. 

So, now you take partial derivative of this u with respect to u i, you get n i. Partial 

derivative of u with respect to u i plus 1, you will get n i plus 1. So, in weighted Galerkin 

based weighted residual method, weight function is going to or shape function takes the 

position of weight functions. 

So, when you are apply the finite element technique in Galerkin based weighted residual 

method, weight functions are same as shape function. These three points you just keep in 

mind we will be using later stage. 
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And now, these trial solutions, the first derivative, the derivatives of this trial solution 

and this first derivatives are shown here. If you see, the trial solution is linear and it is 

continuous, linear in each element and continuous across the element boundaries. So, this 

is what is piecewise linear, piece wise continuous; whereas, the first derivative of trial 

solution is discontinuous along the element edges and is constant in each of the element. 

And now we defined what the trial solution is for this problem, in terms of finite element 

shape functions and the nodal values. 

((No audio from 37:09 to 37:19)) 
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Now, we are ready to solve the problem that we are looking at. The equivalent functional 

for the problem that we are looking at using Galerkin method sorry variational method is 

here, and now into this equivalent functional, you can substitute all the trial solutions. 

Before doing that, first we need to decide how many number of elements and how many 

number of nodes that we want to use for this particular problem. To simplify the to 

simplify in writing, the previous equivalent functional, here f is defined like this 

integration over the entire domain can be split into integration over each element 

provided there are no discontinuities in u across solution or element boundaries. Here if 

you see, u is continuous over the entire solution domain that is 0 to 1. 

So, for the trial solution constructed here, there are no discontinuities across element 

boundaries. That you have seen in the figure that I showed you. Trial solution is 

piecewise continuous. So, this equivalent functional the integral 0 to 1, we can split it in 

this manner, where x 1 corresponds to x is equal to 0, and x n corresponds to x is equal to 

1 and depending on the number of elements, you choose for this particular problem, you 

will get so many number of integrals there and the last two terms are boundary terms that 

is u evaluated at x is equal to 1, u square evaluated at x is equal to 1. 
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So, before we proceed further, we need to decide how many elements you want for this 

solution domain. So, let us try using one element; that is, we will take only single 

element over the entire domain. The first node coincides with x is equal to 0 and the 

second node coincides with x is equal to 1. 

 If the entire domain is considered as one element with nodes placed at ends of the 

domain; that is, x at x is equal 0, that is x 1 is equal to 0, x 2 is equal to 1, length of the 

element is 1. The nodal parameters are the unknowns that that are to be determined or 

denoted with u 1 and u 2. u 1 corresponds to node 1, u 2 corresponds to node 2, and now 

for this element, you know what is node 1 and what is node 2. 

So, you can easily write a trial solution as n 1 u 1 plus n 2 u 2, and from the nodal 

coordinate information that is given to you here, you can easily find what is n 1 and what 

is n 2 and also essential boundary condition is prescribed for this problem at u evaluated 

at x is equal to 0 that is 1. 



(Refer Slide Time: 41:15) 

 

So, n 1 n 2 substituting the nodal coordinates, the trial solution becomes this, essential 

boundary condition at node 1 requires u 1 is equal to 1. When you substitute u 1 is 1 into 

the previous equation or at the trial solution, it becomes u is equal to 1 minus x plus x 

times u 2 and the derivative of it; you can easily find, it turns out to be minus 1 plus u 2. 

So, all this all this quantities that is trial solution and derivative of trial solution are 

required for us to plug in to the equivalent functional. So, we need to plug into this 

functional. ((No audio from 42:08 to 42:16)) 
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Substituting trial solution and recognizing that u evaluated at x 1 is equal to 1 is nothing 

but u 2; the equivalent functional becomes this and you need to… here u i i as a function 

of u and u in turn is a function of u 2, so, i becomes function of only u 2 and if you 

simplify this equation by integrating, it is going to be function of u2 a 1 carrying out 

integration and simplifying results in this equation, and now we need to invoke the 

condition that variation of i should be equal to 0 which is possible only when partial 

derivative of i with respect to u 2 or here since i is function of only u 2, it is derivative of 

i with respect to u 2 should be equal to 0, and that is called stationarity condition. 

(Refer Slide Time: 43:19) 

 

So, necessary condition for minimum of i is partial derivative of i with respect to u 2 

equal to 0, which leads to one equation, one unknown, and you can solve for this 

unknown u 2 and that substitute this u 2 into the trial solution, you get complete solution. 

Therefore, the approximate solution is u is equal to, if you simplify after substituting u 1 

u 21 values into the trial solution that we started out with it and simplifying that equation 

the approximate solution turns out to be u is equal to 1 minus 0.25 x and also you can 

take derivative of this which turns out to be a minus 0.25. 

((No audio from 44:15 to 44:22)) 
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And this plot shows one element solution, and derivative, the approximation of the 

derivative obtained using one element. 

((No audio from 44:39 to 44:44)) 

We do not know whether this one element is good enough or not. So, what we can do is 

we can increase the number of elements and see whether solution is converged or not.So, 

now let us try using two elements. 

(Refer Slide Time: 44:58) 

 



Two element solution; the solution procedure is same as for one element solution. First 

you need to divide or discretize the domain into two elements here because we are 

looking for two element solution; discretize domain into two elements, and take for 

simplicity, here the two elements are assumed to be of same length, it need not be. So, x 

the first node coincides with x is equal to 0, second node coincides with x is equal to 0.5, 

third node coincides with x is equal to 1, and length of each element is 0.5. 

Since nodal values of the special coordinate sorry special coordinate values and the 

length of each element is known, we can easily write the approximate trial solution for 

each of these elements, and also noting that essential boundary condition is prescribed at 

node 1 which is u evaluated at x is equal to 0 is 1, it turns out that u 1 is equal to 1. 

((No audio from 46:11 to 46:16)) 

(Refer Slide Time: 46:16) 

 

So, trial solution for element one; substitute the special coordinates corresponding to 

node 1, node2; here you have two elements. So, for each element, you have a locally 

node 1 node 2, and global node number is different from local node number. For element 

1 local nodes 1 and 2 coincides with global nodes 1 and 2. So, you can plug in the 

corresponding special coordinates of nodes and get n 1 n 2, and once you get a n 1 n2, 

you can write approximate trial solution. Here u 1 value is also substituted, u 1 is equal 

to 1; that is already given, and derivative of u is you can easily check it turns out to be 

minus 2 plus 2 u 2. 



And now, trial solution for element 2. For element two local node 1 coincides with 

global node 2, local node 2 coincides with global node 3. So, shape functions for element 

1 sorry element 2, no at local node 1 local node 2 are given here, and here both u 2 u 3 

the nodal values at node 2 and node 3 are unknown. 

So, the trial solution turns out to be u times 1 minus x. u is equal to 2 minus 1 minus x u 

2 plus 2 minus 2 times minus point 5 plus x u 3, and derivative of it is minus 2 u 2 plus 

two u 3. Substituting all this quantities; that is, trial solution and derivative of trial 

solution into the equivalent functional, here there are two elements. So, you will have 

two integrals; integral over the first element plus integral over the second element. 
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And the first element domain is from 0 to half and second element domain is from half to 

1, and the last term is boundary term which corresponds to, in this particular 

discritization, x is equal to 1 corresponds to u 3. So, u evaluated at x is equal to 1 is u 3.  
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Substituting that information, u i as a function of u turns out to be this and simplifying 

this integral, you get i as a function of u 2 and u 3 and then applying this stationarity 

conditions, you get two equations, two unknowns. 

First equation is partial derivative of i with respect to u two is equal to 0, and second 

equation is partial derivative of i with respect to u 3 is equal to 0, two equations two 

unknowns. Solve for these two unknowns; u 2 u 3, and solution of these equations gives 

u 2 is equal to 0.9115 and u 3 is equal to 0.75.  
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And once we get these two nodal values, we can go back to each element, complete 

solution can be obtained by substituting this nodal values into trial solution for each 

element. 
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So, go to the first element. You know what is trial solution in the first element and you 

substitute u 1 is already substituted. Now, you got u 2 value. Substitute and simplify that 

gives to you approximate solution in element one, and take derivative of it you get this 

one, and similarly go back to element 2, substitute the nodal values of u 2 u 3, you get 

the approximate solution, and take derivative of it, you get (( )). 

And now we got approximate solution element 1 and derivative of it in element 1, 

approximate solution in element 2 and derivative of it in element 2. So now, we are 

ready to plot. 
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This is how solution looks using two elements and derivative of solution looks using two 

elements. Still we are not sure whether our solution is converged or not.  
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So, we can go further and use three elements. So, divide the solution the problem domain 

into three elements, each element having length 1 over 3 and all elements have same 

length and the nodal the coordinates of nodes are shown in the figure there. 

Node 1 corresponds to x is equal to 0, node 2 to corresponds to x is equal to 1 over 3, 

node 3 corresponds to 2 over 3, node 4 corresponds to 1, and essential boundary 



condition is prescribed at node 1, and also natural boundary condition are u evaluated at 

x is equal to 1corresponds to u 4 now. Noting all these things, what you need to do is you 

need to go to element 1, develop the trial solution, derivative of trial solution. 

Similar procedure you need to repeat for element 2 and element 3, and then substitute all 

this information into the equivalent functional, and apply the stationarity conditions and 

solve for u 2, u 3, and u 4. 

Again, once you get this u 2, u 3, u 4 you go back to each element and get the trial 

solution and derivative of it. And whatever the task that you are performing after getting 

the nodal values u 2 u 3 u 4, that is what is called post processing. So, you do post 

processing to get to go to the each element, and then find the approximate solution in 

each element.  
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All that information, all that procedure details are not given and the plot is shown here, 

comparative plot of approximate solution that is obtained using one element, two 

element and three elements. As you can see here, when you use one element, the 

difference between one element and two element solution is quite large when compared 

to the difference between the two element solution, three element solution. 

And you can also plot a comparative plot of each of this discritization for first derivative 

of u and that looks like that. And as you can see from these two figures, the solution is 



fairly converging from two elements to three elements; whereas, derivative of this 

approximate solution is still not converging when we go from two elements to three 

elements. And if you want to further reduce error, you can go for four element solution 

and as you can see here, as you increase number of elements, the effort that you have to 

put in solving the solving for the unknowns is becoming more. 
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So, let us see what the advantages of finite element method are. So, what we did is we 

solved a problem using Rayleigh-ritz method or variational method by substituting finite 

element approximations of trial solutions and derivative of trial solutions, and we did 

convergent study, and based on the observations that we obtained by solving this or by 

with this experience. 

The advantages of finite element are: as the number of elements is increased finite, finite 

element solution gets better even with fairly simple trial solution over an element. 

You please remember that we have use the simplest trial solution that we can use; that is, 

linear trial solution, and you also observed that as the number of elements is increased, 

finite element solution is getting better. A simple trial solution; obviously, require less 

effort in carrying out the required integrations and differentiations. 



(Refer Slide Time: 55:39) 

 

Generally with approximate methods, solution converges, solution itself converges fairly 

quickly; however, derivatives converge more slowly. This is what we have observed. 

Using lower order trial solutions over an element for a simple for example, linear 

polynomial makes this situation even worse. 

For linear element, solution is continuous across element boundaries, but its first 

derivative has discontinuities, and what you need to do if you want to use good 

derivative approximation? You need to use large number of lower order elements. 
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Of course, you can also use higher order polynomial trial solution to alleviate this 

problem. And another advantage of finite element method is you know the physical 

nature of unknown parameter. So, it is easy to apply the essential boundary conditions. 

Variables at nodes must be selected such a way that essential boundary condition can be 

imposed directly, and this is one of the important points that you have to keep in mind. 

Suppose you have a boundary condition prescribed at a particular location, and please 

make sure that you have a node at that location, because unless you have a node, we 

cannot impose that boundary condition. 

So, variables at nodes must be selected such a way that essential boundary condition can 

be imposed directly, and we will see this last point later; that is, for a fourth order 

problem it is necessary to choose solution as well as its first derivative at each node as 

the unknown nodal parameters. 

We will continue in the next class rest of the things. 


