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Today’s class, we look at three-dimensional elasticity problems. So far, we have looked 

at planar and axisymmetric elasticity problem, which are special case of these three-

dimensional elasticity problems. If you recall the plane stress plane strain problems, that 

we looked at are special case of three-dimensional elasticity problems, and also 

axisymmetric problems that we looked at is also a special case of three-dimensional 

elasticity problems. Only thing is when structure loading, material properties satisfy 

certain criteria, we can model a three-dimensional elasticity problem as a two-

dimensional one.  

If it is plane stress plane strain case, we have three stress components, and three strain 

components that we actually computed at each element after solving for displacements 

whereas, if you look at axisymmetric elasticity problems, we computed actually four 

components of stresses and strains in each element or a each integration point. So, in 

plane stress plane strain problems, the constitutive matrix is of dimension 3 by 3; in 

axisymmetric elasticity problems, the constitutive matrix is of dimension 4 by 4. When 

the structure loading, and material properties do not permit us to make any of these 

assumptions of plane stress plane strain for axisymmetric case, then we need to model 

the entire three-dimensional problem using finite element method.  

In that case, we are going to have six components of stresses, and six components of 

strain, and the constitutive matrix which relates stresses with strains is going to be 6 by 

6. And also, if you recall for plane stress plane strain problems or axisymmetric elasticity 

problems, at each point there are two degrees of freedom. If it is plane stress plane strain 

problem, it is in the x direction, and y direction; if it axisymmetric elasticity problems, it 

is in the radial direction axial direction to displacements components, whereas for three-



dimensional elasticity problems, we are going to have three displacement components; 

one in the x direction, another in the y direction, the third one in the z direction.  
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Now, let us look at three dimensional elasticity problems. Planar and axisymmetric 

elasticity problems considered in the previous lectures are special cases of general three 

dimensional elasticity theory. The general case of three dimensional stress analysis shall 

be discussed in the next few lectures. 
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A three dimensional elasticity problem involves six stress components sigma x, sigma y, 

sigma z, tau x z, tau y z, tau x y, where the first three components that is, sigma x sigma 

y sigma z are called are normal stresses and tau x z, tau y z, tau x y or shear stresses. And 

corresponding to these stresses the six strain components and the primary unknowns are 

three displacement components along three coordinate directions, that is the along x 

direction, which is denoted with letter u; along y direction, which is denoted with letter 

v; along z direction, which is denoted with letter w. So, these are the three displacement 

components u v and w.  

There are six stress components and all this six stress components can be put together in 

a vector denoted with sigma as shown here and strain vector consists of six strain 

components, all the six components of strain can be put together in a vector denoted with 

letters epsilon in this manner. Now, we need to know how the strains are related to 

displacements, as we already looked at for planar and axisymmetric elasticity problems 

under small displacements and strain assumptions. 
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Strain displacement relations, for three dimensional elasticity problems can be written 

like this, that is epsilon x is partial derivative of u with respect to x, epsilon y is partial 

derivative of v with respect to y, epsilon z is partial derivative of w with respect to z, 

gamma x y is partial derivative of u with respect to y plus partial derivative of v with 

respect x, gamma y z is partial derivative of v with respect to z plus partial derivative w 

with respect to y, gamma z x is partial derivative of w with respect x plus partial 

derivative of u with respect to z. Assuming linear elastic behavior, the stresses and 

strains are related through this equation sigma is equal to C times epsilon, where c is the 

constitutive matrix, which is going to be of dimensions 6 by 6 since, there are six stress 

components and six strain components. 
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For an isotropic linear elastic material is constitutive matrix is given by this one, where E 

is Youngs modulus, mu is Poissons ratio. So, constitutive matrix requires two material 

parameters Youngs modulus and Poissons ratio. 
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To derive finite element equations, we require potential energy functional. The finite 

element equations for three dimensional elasticity problems can be derived using 



potential energy functional. This potential energy functional can be written as follows. 

Potential energy functional is denoted with letter pi. Pi is equal to u minus w s, where u 

is strain energy and w s is work done by the applied forces. This potential energy 

functional is going to be function of all the three displacement components that is u v 

and w. This is similar to plane stress plane strain problems or axisymmetric elasticity 

problem that we already looked at except that potential energy functional, there is 

function of only displacement component along two directions. So, now let us look at 

how strain energy looks like. 
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Strain energy can be calculated by evaluating this volume integral half volume integral, 

epsilon transpose sigma, substituting epsilon is equal to c times, sigma is equal to c times 

epsilon, this can be further written as half volume integral epsilon transpose c epsilon. 

Please note that this formula can be used only under linear elastic assumptions or small 

displacements and strain assumptions. Now, work done by the applied forces is given by 

components of traction along x y z directions multiplied by the corresponding 

displacements and evaluated over the surface over, which fraction components are 

applied. So, work done by the applied forces is given by this surface integral. 
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And if the specified concentrated forces or body forces are present, work done by these 

forces can be calculated in a similar manner. So, we looked at how to evaluate strain 

energy and also how to evaluate work done by the applied forces. We are ready to 

formulate or we are ready to derive finite element equations for three dimensional 

elasticity problem. Before, that we need to make a choice of the type of element that we 

are going to use for solving three dimensional elasticity problems. Here, basically as a 

part of these three dimensional elasticity problems, we are going to look at four node 

tetrahedral element, which is basically a linear element for solving three dimensional 

elasticity problems and also we look at eight node linear solid element commonly known 

as brick element and 20 node solid element with curved edges. 
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In this lecture, let us start with four node tetrahedral elements, a typical element is shown 

here. Four node tetrahedral elements, at each node there are three degrees of freedom 

displacement component along x direction y direction z direction. Total there are four 

nodes, this is the simplest element that we can have for solving three dimensional 

problems. This element is going to be linear along x direction y direction z direction, so 

it is counter part of three node triangular element, which is the linear element for solving 

two dimensional problems. Similar, to three node triangular element, which we usually 

called it as c s t, constants strain of triangular element.  

Similarly, four node tetrahedral elements is a constant strain element in three 

dimensions. It is convenient to use isoparametric mapping concept to develop finite 

element equations in a manner, similar to that we already used for triangular elements for 

two dimensional cases. We need to map this actual element on to a parent element like 

this; parent element is shown on the right hand side. The nodal coordinates of all the four 

nodes of parent element are indicated in the figure. Node one is located at 1, 0, 0, node 

two is located at 0, 1, 0, node three is located at 0, 0, 1, node four is located at the origin 

0, 0, 0 in r, s, t coordinate system. So, actual element is going to be mapped on to this 

parent element, when we are deriving element equations. 
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So, this four node tetrahedral element is an extension of linear triangular element, which 

we already looked at for two dimensional problems to three dimensions extension of 

triangular element to three dimensions. So, the finite element formulation follows very 

closely the development of triangular elements. However, this element is not that 

popular; because of difficulty in dividing three dimensional domains into tetrahedra and 

also main advantage of this element is it simplicity in its formulation. So, now let us look 

at how to derive shape functions for this four node tetrahedral element and the procedure 

that we are going to adopt the similar to that we already adopted for two dimensional 

problems like triangular elements in case of two dimensions. 

So, we start with a polynomial having number of coefficients equal to the number of 

nodes of the particular element and by substituting the trial solution values at the nodes 

we solve for the coefficients and substitute back this coefficients into the trial solution 

and group terms having similar coefficients, which corresponds to the nodal values and 

then we are going to arrive at finite element shape functions. 
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The governing equations for three dimensional elasticity problems involve u, v, w, which 

are displacements along x, y, z directions. Three different trial solutions are therefore 

required and there are three unknown displacements at each node three degrees of 

freedom per node. 
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So, trial solution there are four nodes, linear trial solution in three dimensions u is equal 

to alpha 1 plus alpha 2 x plus alpha 3 y plus alpha 4 z. Similarly, v is equal to beta 1 plus 

beta 2 x plus beta 3 y plus beta 4 z. W is equal to gamma 1 plus gamma 2 x plus gamma 

3 y plus gamma 4 z, where this alphas betas and gammas are unknown solution 

parameters and these solution parameters must be expressed in terms of finite element 

shape functions before proceeding any further. 

(Refer Slide Time: 18:09) 

 

What we will do is, we will adopt procedure that we already familiar with, for the parent 

element the shape functions can be derived very easily as follows to start with the trial 

solution, substitute the nodal value of the trial solution corresponding to node four 

substitute r is equal to zero, s is equal to zero, t is equal to zero and equate the trial 

solution value to the value of the displacement or the value of the nodal value at node 

four. Similarly, trial solution evaluated at node 1 is equal to u 1, applying that condition, 

we are going to get the second equation in terms of alpha 2 and similarly applying the 

condition the trial solution evaluated at node 2 is going to be u 2, we are going to get the 

third equation and similarly, we get the fourth equation by applying the condition the 

trial solution value evaluated at node 3 is equal to u 3. Finally, we got four equations in 

terms of alpha 1 alpha 2 alpha 3 alpha 4. 
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Substituting back this alpha 1 alpha 2 alpha 3 alpha 4 values into the trial solution, we 

get this, which can be written in a matrix and vector form as shown in the right hand side 

of the given equation. So, shape function corresponding to node 1 is r, shape function 

corresponding to node 2 is s, shape function corresponding to node 3 is t and shape 

function corresponding to node 4 is 1 minus r minus s minus t. So, this is how we can 

arrive at the shape functions for four node tetrahedral element. Basically, the procedure 

is similar to that we already adopted for deriving shape functions for three node 

triangular element, except now the dimension is increased. 
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We can also solve starting with u and w, since same trial solution is used for v and w, 

also complete shape function matrix for the parent element can be written as follows, u 

expressed in terms of finite element shape functions, v in terms of finite element shape 

functions, w expressed in terms of finite element shape functions putting together all 

these things in a matrix and vector form, where we can write like this, where n transpose 

is matrix comprising of finite element shape functions of all the four nodes of this 

tetrahedral element and d is the vector consisting of nodal displacements, all the three 

components of displacements at each node for all the four nodes. 
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So, the derivatives of u, v, w with respect to r, s, t can be obtained by direct 

differentiation of shape functions. Please note that N 1 is equal to r, N 2 is equal to s, N 3 

is equal to t, N 4 is equal to 1 minus r minus s minus t. So, we can easily calculate what 

is the derivative of this N 1, N 2, N 3, N 4 respect to r, s, t. So, derivatives of u, v, w with 

respect to r, s, t can be easily obtained once we know the derivatives of shape function 

with respect to r, s, t, which we can easily get since we already know the expressions for 

shape functions. For examples, derivative of u can be evaluated as follows, partial 

derivative of u with respect to r, partial derivative of u with respect s, partial derivative 

of u with respect to t can be written in a matrix and vector form like this, if you put 

together all the partial derivatives of u with respect to r, s, t in a vector as shown there. 
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Taking partial derivatives of shape function with respect to r, s, t. It can be easily 

checked that, in fact partial derivatives of u with respect to r, s, t is given by this one. 

Similarly, derivatives of v and w with respect to r, s, t can be derived. So, this is how 

derivatives of displacement components with respect to r, s, t can be obtained, but if you 

recall strain is related to derivatives of displacement components with respect to x, y, z. 

We need to know what is the relationship between x, y, z coordinates and r, s, t before 

we start derive or before we start expressing strains in terms of finite element shape 

functions and displacements. 
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To know the relations between r, s, t and x, y, z, we can use isoparametric mapping 

concept. Isoparametric mapping concept based on that x is equal to N 1, x 1 plus N 2, x 2 

plus N 3, x 3 plus N 4, x 4, substituting N 1, N 2, N 3, N 4, that is N 1 is equal to r, N 2 is 

equal to s, N 3 is equal to t, N 4 is equal to 1 minus r minus s minus t, substituting that 

information. This expression can further be simplified as shown on the right hand side, 

where x 1 4 means, x 1 minus x 4, x 2 4 denotes x 2 minus x 4, x 3 4 denotes x 3 minus x 

4. Similarly, we can write a y in terms of r, s, t, where x i, x j has the meaning x i minus 

x j, y i, j has meaning y i minus y j. Similarly, we can also express z in terms of r, s, t 

using finite element shape functions of this four node tetrahedral element and when we 

do that we get this. 
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So, now we know how to express x, y, z in terms of r, s, t. So we can easily take what is 

partial derivative of x with respect to r, s, t; y with respect to r, s, t; z with respect to r, s, t 

and we already know how to calculate derivatives of displacement components with 

respect to r, s, t. So, we using both these information and using chain rule of 

differentiation, we can easily arrive a derivatives of displacement components with 

respect x, y, z. Once we know derivatives of displacements with respect to r, s, t and 

finally, we can write the strain displacement relations in a relationship in terms of finite 

element shape functions and the nodal displacement components at the nodes. 
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So, strain displacement relationship partial derivatives of u, v, w are evaluated using 

chain rule. Here derivatives of u alone are shown, partial derivative of u with respect to r 

can be written as partial derivative of u with respect x times partial derivative of x with 

respect to r plus partial derivative of u with respect to y times partial derivative of y with 

respect to r plus partial derivative of u with respect to z times partial derivative of z with 

respect to r. Similarly, we can write partial derivative of u with respect to s, partial 

derivative of u with respect t. 
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These three equations can be put together in a matrix and vector form. Writing three 

equations in a matrix form we get this relation, where j is used to denote partial 

derivatives of x with respect to r, s, t, where j is used to denote components of partial 

derivative of x with respect to r, s, t, y with respect to r, s, t, z with respect to r, s, t or a 

matrix consisting of partial derivatives of x with respect to r, s, t, y with respect to r, s, t, 

z with respect to r, s, t is denoted with letter j, which is called Jacobian matrix. This 

equation basically helps us to calculate partial derivatives of displacement component 

along x direction with respect to r, s, t. Once we know it is derivative with respect to x, y, 

z, if you want to know how to calculate partial derivatives of displacement component u 

along x, y, z directions.  

Once, we know it is partial derivatives with respect to r, s, t, we need to know what is j 

inverse derivatives of u with respect to x, y, z can be computed by inverting j matrix. So, 

the inverse relation is like this. Since, we already know x in terms of r, s, t; y in terms of 

r, s, t; z in terms of r, s, t we can easily take partial derivatives and express Jacobian 

matrix in terms of x coordinate x, y, z coordinates. Similarly, once we express Jacobian 

matrix in terms of x, y, z coordinates of all the four nodes, we can easily find what is j 

inverse. 
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So, taking derivatives of the relations that we derived based on isoparametric mapping. 

These are the three equations that we derived based on isoparametric mapping taking 

partial derivatives of these with respect to r, s, t. We can easily check that Jacobian 

matrix is indeed given by this where x 1 4, 2 4, 3 4, y 1 4, 2 4, 3 4, z 1 4, 2 4, 3 4 has 

meaning that we already discussed earlier that is x i j is nothing but, x i minus x j, y i j is 

y i minus y j, z i j is z i minus z j. With that understanding, we can easily once we know 

all the coordinates of all the four nodes of this tetrahedral element we can easily 

calculate, what is j numerical value? Once we have numerical value of j, we can easily 

find what is j inverse? 
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So, j is given by this which is going is a 3 by 3 matrix, so we can easily find what is j 

inverse analytically in this manner. So, once we know the nodal coordinates for all the 

four nodes of tetrahedral element, we can easily plug in that into this equation and get 

what is j inverse and here determinant of j is given by this equation. 
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If you recall determinant of j has some importance for a valid isoparametric mapping 

determinant of j should be non zero over the entire element domain. Here, we are dealing 

with four node tetrahedral elements, so element domain goes from r, s, t going from 0 to 

1. So, the isoparametric mapping is valid as long as the determinant of j is non zero over 

the domain r, s, t between 0 and 1, entire domain of parent element. So, we are ready to 

express derivatives of displacement components with respect to x, y, z in terms of nodal 

values. 
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This equation gives the relationship between partial derivatives of u with respect x, y, z 

and substituting all the information that we just derived. This equation, which relates 

partial derivative of u with respect x, y, z with the nodal displacement components for all 

the four nodes of this tetrahedral element and plug in the components of j inverse and 

simplifying we get this equation. Similarly, we can derive equations for partial 

derivatives of p with respect x, y, z; partial derivatives of w with respect to x, y, z and 

they look like this. 
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So, now we are ready to express strains in terms of nodal displacements. 
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Strains now can be expressed in terms of nodal displacements by choosing appropriate 

rows from the above matrices. Since, strain components are defined like this, so putting 

together all the strain components the corresponding definitions that is epsilon x is equal 



to partial derivative of u with respect x, epsilon y is equal to partial derivative of v with 

respect to y, epsilon z is equal to partial derivative of w with respect to z, gamma x y is 

partial derivative of u with respect to y plus, partial derivative of v with respect to x and 

so on putting together all that information and substituting the partial derivatives of 

displacements with respect x, y, z. We get the right hand side, which relates strains with 

nodal displacements and which can be compactly written as epsilon is equal to B 

transpose d. 
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And here h 1, h 2, h 3 are defined and this h 1, h 2, h 3 are basically they are related to 

the components of inverse of Jacobian through these equations. If you see this strain 

displacement relation, it can be easily verified that all terms in the B matrix are constant. 

So, this element is constant strain triangular element just like three node triangular 

element for plane stress plane strain problems. 



(Refer Slide Time: 37:15) 

 

So, we express strains in terms of displacements nodal displacements, so now we are 

ready to derive element stiffness matrix, for that we need to go back to the strain energy 

definition. Strain energy can be written or can be expressed through this equation; 

substituting epsilon is equal to B transpose d, that information into this equation. We can 

evaluate strain energy through finite element approximation as half d transpose k d, 

where k is element stiffness matrix and it is given by this volume integral B C B 

transpose. Since, B is constant and since constitutive matrix is also constant, we can pull 

them out of the integral, finally k is given by B C B transpose times v, v is nothing but 

volume of tetrahedral element.  

If you recall, when we are deriving finite element equations for three node triangular 

element, area of triangle are determinant of j is twice the area of triangle. Similarly, 

determinant of j here for four node tetrahedral element is six times volume of the 

tetrahedral element or volume is given by 1 over 6 determinant of j, substituting that we 

can evaluate element stiffness matrix using this equation. Please note that here the 

assumption or this integral is simplified in this manner based on the condition that B is 

not constant. We need to adopt some kind of numerical integration like Gaussian 

Quadrature, v is the volume of element and it can be easily shown that volume of 

element is one sixth of determinant of j.  



So, this is how one can evaluate element stiffness matrix for four node tetrahedral 

elements. So we are ready, except that we do not know what is force vector? 
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So, now let us look at equivalent force vector. Equivalent nodal forces, let T x, T y, T z 

with the components of fraction applied in x, y, z directions. So, work done is given by 

this displacement components times traction components integrated over the surface over 

which tractions are specified and substituting displacement, in terms of finite element 

shape functions displacements u, v, w, in terms of finite element shape functions and 

nodal values. We get what is given on the right hand side of this equation, which can be 

further simplified as d transpose Q T, where q is the equivalent nodal load vector defined 

as surface integral matrix consisting of finite element shape functions times the 

components of tractions. 
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To evaluate this Q T integration can be performed in a closed form, if specified surface 

tractions are assumed to be constant over the element and this is for one face of the 

tetrahedral element and similar integrations needs to be perform separately for forces 

applied along different faces of tetrahedral elements. These integrations are similar to the 

integrations for body forces in case of triangular elements. So, substituting N matrix 

comprising of finite element shape functions if all the four nodes of this tetrahedral 

element and simplifying, we get this Q T on one of the face joining nodes 1-2-3 that is 

the reason why Q and subscript T face 1-2-3 is shown there.  

It is given by area of face 1-2-3 divided by 3 times the components or a vector consisting 

of components of tractions that are applied. It can easily be noticed since we are dealing 

with face joining nodes 1-2-3, if you see this vector it is having non zero components 

corresponding to nodes 1-2-3 and zero components corresponding to node 4 and also it 

can be noticed that the total load on the face 1-2-3 is divided equally among all the three 

nodes defining that face. Again, this equivalent nodal load vector is based on the 

condition that T x, T y, T z are constant, if they are not constant then we need to do 

numerical integration of previous equation, assuming T x, T y, T z as functions of spatial 

coordinates. 
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And similar expressions can be written for forces applied on other faces. It should be 

noted that Q T vector implies that total load on face is divided equally among the three 

nodes defining that face. Body forces can be handled in a similar manner. So, we looked 

at how to evaluate equivalent nodal force vector for the applied traction components 

along any of the faces and we know how to evaluate element stiffness matrix. We can 

easily assemble element stiffness matrix and equivalent load vector given a discretization 

and once we evaluate this quantity that is element stiffness matrix and equivalent nodal 

load vector or each of the elements. We need to assemble global stiffness matrix and 

global force vector base following similar procedure that we followed for two 

dimensional problems based on the element connectivity.  

We can easily put the contribution from each of the element in the corresponding 

locations in the global stiffness matrix and get the global stiffness matrix and also global 

nodal force vector, then applying appropriate essential boundary conditions and if the 

essential boundary condition turns out to be zero, we can delete that particular row and 

column of the global stiffness matrix and arrive at the reduced equation system, which 

we can solve for the nodal displacements and all this procedure is similar to that we 

already look that for two dimensional problems.  



Once we get the nodal displacements, we can calculate strains through strain 

displacement relations and once we arrive at strains, we can calculate stresses through 

stress strain relation. The stresses that we are going to obtain or going to be in terms of x, 

y, z coordinates that is sigma x, sigma y, sigma z. To know whether a particular 

structural component or mechanical component satisfies certain failure criteria or not we 

need to know what are called principal stresses, which are different from sigma x, sigma 

y, sigma z and all the shear components that is tau x y, tau y z, tau z x. 
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Now, let us look at how to calculate this principal stresses. For three dimensional 

elasticity problems the normal and shear stresses can be combined into principal stresses, 

which can be used for further applications in any of the failure criteria. These principal 

stresses are going to be the roots of the following cubic equation, which is actually in 

terms of stress invariants i 1, i 2, i 3 are called stress invariants, where i 1 is defined like 

this i 2, i 3. So, once we know the all the components of the stresses in a particular point, 

we can easily evaluate what is i 1, i 2, i 3 using the normal stress components and shear 

stress components. Once we get the numerical values of i 1, i 2, i 3, we can solve this 

cubic equations for the three roots that gives us sigma 1, sigma 2, sigma 3, which 

corresponds to the three roots of the cubic equations that is shown here. 
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Or analytically the roots of that cubic equation can be expressed as follows. Sigma 1 is 

given by i 1 over 3 plus c times cos theta, sigma 2 is given by i 1 over 3 plus c times cos 

theta plus 2 pi over 3, i 3 is given by i 1 over 3 plus c times cos theta plus 4 pi over 3, 

where theta is defined like this, one-third cos inverse minus of 3 b over a c, where a b c 

are defined like this, in terms of stress invariants. So, either we can evaluate sigma 1, 

sigma 2, sigma 3 by solving the cubic equations cubic equation, which is in terms of 

stress invariants numerically or we can use this analytical solutions to get sigma 1, sigma 

2, sigma 3 for further application in any of the failure criteria. 


