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In the last few classes, we have seen how to solve three-dimensional elasticity problems 

taking advantage of geometry and loading, and treating them as plane stress plane strain 

problems which are essentially two-dimensional problems, but some cases we can also 

depending on whether the problem is involving axisymmetric geometry, and loading. We 

can treat them as essentially two-dimensional problems treating them as axisymmetric 

problems. 

So, in today’s class or in the next two classes we will be discussing about axisymmetric 

elastic elasticity problems. So, basically as we did in plane stress plane strain problems 

will be looking at governing differential equation, and finite element equations for 

axisymmetric problems using triangular, and quadrilateral elements. So, three-

dimensional elasticity problems involving axisymmetric geometry, and loading can be 

treated as essentially two-dimensional problems. For axisymmetric problems, the 

structure loading and material properties must be symmetric about axis of revolution. 
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For illustration purpose, a typical situation is shown here with z axis as axis of 

revolution. So, for  three-dimensional elasticity elasticity problem to be modeled as 

axisymmetric problem. The structure geometry loading, and material properties must be 

symmetric about axis of revolution. An an Axisymmetric stress analysis problem can be 

formulated in terms of two displacement components - one in the radial direction r, and 

the other one is in the axial direction z. So, the displacement component in the radial 

direction that is in the r direction is denoted in the rest of this lecture, it is denoted using 

u, and the displacement component in the axial direction or in the z direction is denoted 

with w.  

This is similar to u and v that we used for denoting the displacements in x and y 

directions for plane stress plane strain problems. 
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And because of symmetry, all stress components are independent of theta. The stress and 

strain components of interest are as follows sigma r sigma z sigma theta tau r z and the 

corresponding strain components are epsilon r epsilon z epsilon theta gamma r z. 

Assuming small displacements and strains the strain displacement relations, similar to 

that of plane stress plane strain problems. We require first to identify, what are the non 

zero stress components and non zero strain components and then we need to also know, 

what is the relationship between strains and displacements and also how the various 

stress components are related to various strain components.  

So, we require all these equations for us to develop the finite element equations based on 

potential energy functional similar to what we did for plane stress plane strain problems. 
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So, assuming small displacements and strains are related to or displacements are related 

to strains via these equations and if you observe these equations singularity, there is 

singularity in epsilon theta. That is as r goes to zero epsilon theta tends to infinity 

numerical simulation numerical implementation of axisymmetric finite elements must 

take this singularity into consideration. So, these four equations give us relation between 

strains and displacements and similar to that, what we did for plane stress plane strain 

problems assuming linear elastic material behavior. 
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The strains and stresses or stresses and strains can be related via this equation, sigma is 

equal to constitutive matrix denoted with capital c times epsilon, where constitutive 

matrix is defined like this which depends on two material constants, Youngs modulus 

and Poissons ratio and if you compare these equations with corresponding plane stress 

plane strain equations. It can be seen that the two problems are very similar, only 

difference is the primary unknowns of Axisymmetric problems are u and w, whereas if 

you recall it is u and v in case of plane stress plane strain problem for the discussion that 

we had. 

If somebody is interested they can use different notation but, we used u and v for 

displacement components in x and y directions for plane stress plane strain problems. So, 

now to develop finite element equations, we require potential energy functional for 

axisymmetric problems can be written like this. 
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Similar to plane stress plane strain problems except that potential energy functional. Now 

is going to be function of u and w displacement in the r direction and displacement in the 

z direction that axial direction so, potential energy functional is defined like this u minus 

w. I guess by this time you can easily understand, what u stands for and what w stands 

for but, for completeness it is given here u is strain energy, w is work done by the 

applied forces. So, now we need to see how to calculate this strain energy and worked 

done by the applied forces for axisymmetric problems. 
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So strain energy, we are dealing with Axisymmetric problem typical problem is shown in 

the figure and u is defined as integral volume integral epsilon transpose sigma. Since the 

problem is Axisymmetric, we can integrate between theta going from minus pi to pi and 

simplify this as shown in the slide. So, finally strain energy is given by half area integral 

of epsilon transpose c times epsilon times 2 pi r. 
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Now, work done by the distributed surface forces if t r t z are the components of applied 

forces in r and z directions, then work done by these forces is given by this. Evaluation 

of this strain energy and work done by the applied forces is very much similar to that of 

plane stress plane strain problem except that, we need to take care of geometry that is 

why it should pay little bitter attention to that. Here we are integrating between theta 

minus pi to pi because; this axisymmetric problem and we can by doing this we can 

actually eliminate theta in expression for work done by the distributed forces.  

So, w finally is integral over this the line along which or the side along which the 

traction is applied or distributed force is apply we need to evaluate the integral that is 

given in this equation, which is integral displacement in the r direction times traction in 

the r direction plus displacement in the z direction times traction in the z direction and 

entire thing times 2 pi r over, we need to evaluate this over the line or edge over which 

distributed force is applied. 

If specified concentrated forces or body forces are present work done by these forces can 

be calculated in a similar manner. So, with these definitions let us develop equations for 

a triangular element axisymmetric linear triangular element. 
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A typical triangular element is shown here, the element is actually a circular ring with 

triangular cross section and the differential equation involves displacements in the r 

direction and displacement in the z direction and similar to that of plane stress plane 



strain problems, two different trial solutions are required, one for displacement 

component in the r direction and another for displacement component in the z direction. 
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With three nodes, a linear solution for displacement in each direction can be used this is 

similar to what we did for plane stress plane strain problems. Because we are trying to 

develop element equations for three node triangular element. So, a linear solution for 

displacement in each direction can be used, because there are three nodes we need to 

start with a polynomial having three coefficients and since we are dealing with two 

dimensional problems. So, the trial solution will be something like u is equal to alpha 

one plus alpha two times r plus alpha three times z something like that. 

So, since there are also keep in mind there are two unknown displacements at each node. 

The trial solutions for the displacement component in the r direction and displacement 

component in the z direction looks like this and both these displacement components are 

going to be a functions of are they are going to be function of r and z. Here alphas and 

betas are unknown solution parameters the solution the trial solution. 
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This two trial solutions can be expressed in terms of shape functions like this u and w. 

This is similar to what we did for plane stress plane strain problems and where N 1, N 2, 

N 3 are the shape functions or linear shape functions for triangular three node triangular 

element, where N 1, N 2, N 3 depends on the geometrical coordinates of the three node 

triangular element. So, once the coordinates of three node triangular element are given 

then, we can easily figure out what are this N 1, N 2 and N 3. So, N 1, N 2, N 3 are 

defined like this as you can see, N 1 is linear in with linear or N 1, N 2, N 3 are all three 

are linear with respect to r and z f 1 fs bs cs are some coefficients, which are functions of 

special coordinates of triangular element. 
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Special coordinates of nodes of triangular element so, if the coordinate information of all 

three nodes is given. We can easily find what is area of triangle fs and bs fs bs and cs f 1 

f 2 f 3 b 1 b 2 b 3 c 1 c 2 c 3. Area of triangle can also be easily computed, using the 

relation that area is half times determinant of matrix consisting of one ones in the first 

row and the coordinates of r in the second row and coordinates of z in the third row of all 

the three nodes. This formula is already there with you, which we used for calculating 

area of triangles when we are dealing with plane stress plane strain problems. So, far we 

have seen how to express trial solutions for axisymmetric linear triangle triangular 

element trial solutions, in terms of finite element shape functions. So, now we are ready 

to actually derive the element stiffness matrix and these two trial solutions, which we just 

seen.  
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They can be written together in matrix form as follows, which can be compactly written 

as psi is equal to n transpose d and psi is a vector consisting of the displacement 

components in the r direction and displacement component in the z direction. In order to 

use potential energy functional strain energy and work done by the applied forces must 

be expressed, in terms of nodal unknowns or nodal parameters that is u 1, v 1, w 1, u 1, u 

2, u 3, w 1, w 2, w 3. Strain energy, in terms of nodal unknowns can be expressed once 

we know the relationship between strains and displacements, because you know potential 

energy functional is function of strain and stress. So, or finally we have seen potential 

energy or expressed potential energy as a function of strain.  

So, we need to know what is the relationship when the trial solutions that we just 

obtained and the strains so, that we can plug in this information into the definition of 

strain energy. 
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Strain energy, in terms of nodal unknowns can be expressed as follows. First we need to 

write what is strain vector strain? Vector consists of three four components here and the 

four components are defined and now we know, u in terms of finite element shape 

functions of the three nodes and the nodal parameters and also we know w in terms of 

three finite element shape functions and nodal parameters w 1, w 2, w 3. So, using that 

information we can further write this vector of strains likes what is shown there and if 

you carefully see the last part of equation. You can realize that epsilon r is constant over 

the entire element. 
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Because, bs all are functions of special coordinates, which are going to be constant for a 

particular element. So, epsilon r is going to be constant; similarly, epsilon z is constant 

and gamma r z is also constant. Only quantity which is variable is epsilon r, which is 

function of r as shown the last part of equation. So, epsilon this vector or this relation can 

be compactly written as epsilon is equal to b transpose d and we need to plug in this 

information into the strain energy definition.  
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This is by definition strain energy for axisymmetric problem and substituting epsilon is b 

transpose d substituting epsilon is equal to be b transpose d. As we can further simplify 

this like the way it is shown there, where k is element stiffness matrix. As, I just 

mentioned unlike plane stress plane strain case all terms in b matrix are not constant and 

therefore, some type of numerical integration is necessary to evaluate stiffness matrix k. 

One of the simplest integration that you can adopt is one point integration that is, 

evaluating all the quantities which are functions of x of u, which are functions of special 

coordinates r and z at the centroid of triangle where, the coordinates of centroid are given 

by this r bar and z bar, r bar is nothing but, average of all the r coordinates and z bar is 

nothing but, average of all z coordinates. 



(Refer Slide Time: 22:25) 

  

So, instead of evaluating k at every point one can evaluate k at the centroid, if we use 

this one point integration formula that is k is evaluated by using matrix b at the element 

centroid or centroid of the element or if somebody is interested in evaluating this more 

accurately, then we they can adopt the numerical integrations can that, we already looked 

at by selecting the points and weights from the table that is already supplied to you. So, 

now let us look at the other quantity that is work done by the applied forces or how to 

evaluate equivalent nodal load vector? 
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Equivalent nodal loads are obtained from work done by the applied forces. For 

Illustration purpose, considered uniformly distributed forces which are applied along 

element edges. Let t r t z be the components of applied traction or applied surface force 

in r and z directions, then work done by the applied forces is given by this. 
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One traction in the r direction times displacement in the r direction plus traction in the z 

direction times displacement in the z direction, whole thing multiplied by 2 pi r and 

integrated over the element edge along which this traction is applied, where t r t z are the 

components of t applied surface traction in r and z directions. So, w t are work done by 

work done by the applied traction can be compactly written as d transpose Q ,T where Q 

T is equivalent nodal load vector and Q T is defined like this. So, to evaluate Q T we 

require to know, what is n is nothing but, a matrix consisting of shape functions, along 

the side or element edge over, which tractions are specified or along the side or edge 

over, which we require to or we are interested in evaluated assembling this equivalent 

nodal load vector. 

And this integration can be performed in closed form, if the specified surface tractions or 

simple functions of r and z. Similar to that we discussed earlier the simplest case is when 

r and z are specified r and z are constant or uniform traction is specified along one or 

more sides of an element. 
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As an illustration, consider uniform pressure applied along side 1 2, that is t r t z are 

constant integrations can be performed easily by defining local coordinate system as 

shown in figure along side 1 2 and along this side, the shape function matrix are to get 

the shape function matrix, we require to know what are the shape functions of N 1, N 2 

and N 3 and the shape functions of N 1, N 2 can easily be written using Lagrange 

interpolation formula. Once we define local coordinate system as shown in the figure, 

along side 1 2 shape functions N 1, N 2 are linear functions of s. Because, alongside 1 2 

we have only two nodes so, N 1 N 2 are going to be linear functions of local coordinate 

system s, which is defined along side 1 2 and N 3 is going to be zero along element edge 

1 2.  

So, writing the shape function, shape functions of N 1, N 2 using Lagrange interpolation 

formula and also with respect to the local coordinate system defined alongside 1 2. We 

can finally, get these to N 1, N 2, where l 1 2 is length of side 1 2 so, with this we can 

write shape function matrix consisting of N 1, N 2, N 3.  
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Which is required for evaluating or which is required for computing equivalent nodal 

load vector? So, this is the shape function matrix along side 1 2.  
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And then we need to substitute this into the definition of equivalent nodal load vector 

and if you see the last the final part of the equation. We have r, please note that r can also 

be interpolated using finite element shape functions or the similar that is what 

Isoparametric mapping that we discussed earlier. So, r can also be expressed as a 

function of N 1, N 2 along side 1 2, before we simplify this equation further. 
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So, since r is also a linear function of s along side 1 2, it can be written in terms of shape 

functions like this. So, now substituting r into the previous into the previous equation of 

Q T and by integrating each of the terms here, integration of one of the terms is shown, 

the details of integration of one of the terms is shown. 
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Similarly, other terms can be integrated to get the complete equivalent nodal load vector 

for uniform load along side 1 2. And once we carry out integration for the other terms 

also, Q T looks like this for side 1 2. Please note that is only applicable in case in the 



case of uniform load r t or t z are constant along the applied side or edge. And similar 

expressions for equivalent load can be written if pressure is applied along sides two three 

and three one. 
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If the components of tractions t r t z are not constant, then we need to take care of that 

while doing integration or we need to use numerical integration scheme to simplify the 

integrate, once T r T z becomes complicate. So, far we discussed element stiffness matrix 

and how to assemble equivalent nodal load vector and rest of the things like assembly 

and solution procedure are standard, which are similar to that of plane stress plane strain 

problems, that we already discussed or the earlier problems that we already seen. 

So, assuming that the solution is obtained once the nodal displacements are known the 

strains and stresses for each element can be obtained similar to that we did for plane 

stress plane strain problem. 
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But, for completeness it is again repeated here, calculations of strains and stresses 

assembly procedure assembly and solution procedure remains standard. Once the nodal 

displacements are known strains and stresses for each element can be obtained, except 

that there are four components of strain. There are four components of stresses and the 

constitutive matrix is of dimension four by four and b matrix strain displacement matrix 

is of dimension four by six, except that these equations are similar to that of plane stress 

plane strain problems and note that epsilon r epsilon z gamma r z are constant over 

element but, epsilon theta varies with r. 

This is what, I discussed when we are looking at the b matrix strain displacement matrix 

for axisymmetric problems and similarly, the corresponding stresses will have the same 

behavior. The corresponding stresses have the same behavior that is, sigma r sigma z tau 

r z is going to be constant, whereas sigma theta is going to be function of r that is, it is 

going to vary with r. So, to illustrate all the things that we discussed, so far related to 

axisymmetric problems. Let us take an example and go through all the steps to 

understand this well and again in this example tractions are assumed to be uniform for 

simplicity. 
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So, this is the problem statement. Find displacements and stresses in a long thick 

cylinder under an internal pressure value is given, internal diameter, outer diameter 

outside diameter and also material property details are given both in FPS units and SI 

units. Since, FPS units the values of given in FPS units are appearing to be a round 

figures will be looking at the details of work out in FPS units. But, as I repeatedly 

mentioned earlier as long as we use consistent units, the procedure wise it is not much 

different. So, this is the thick cylinder that, we are going to solve for displacements and 

stresses and as you can easily see, it satisfies all the condition that the structure geometry 

loading and also material properties are symmetric with respect to the axis of revolution. 

So, we can take symmetry axisymmetric into advantage and we can solve this as a two 

dimensional problem. But, before we do that since this is a long thick cylinder, we need 

to also decide how many or how we are going to model the end effects or how we are 

going to model this long cylinder. 
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Since, the cylinder is long the end effects are neglected can be neglected and this is how 

it can be model? A horizontal slice of 0.5 inch or 1.27 centimeters height is modeled 

using two triangular elements. So, this is how this thick long thick walled cylinder is 

modeled, since the length is long, the end effects can be neglected in the entire cylinder 

analysis is reduce to solving this model, which consists of two triangular elements. And 

the model is shown with two triangular elements and also the boundary conditions at 

each of the nodes are shown. Since, the pressure is applied from inside internal pressure 

is applied, the cylinder is going to expand in the radial direction and since the cylinder is 

long the displacement in the z direction is going to be neglected. 

So, the boundary conditions at the four nodes are as shown, the displacement in the z 

direction is constrained, whereas each of these nodes is allowed to have displacement 

component in the radial direction. And element one consists of or comprises of nodes 

one four three and element two constrains comprises of nodes one two four. At each 

node there are two degrees of freedom one in the r direction another one is in the z 

direction. So, element one contribution goes into the rows and columns, corresponding to 

node one four three into the global equation system. Similarly, element two contribution 

goes into one two four are the rows and columns, corresponding to nodes one two four in 

the global equation system. 



And global equation system is going to be of dimension eight by eight. So, the 

contribution from element one goes into one five six seven eight rows and columns, 

element two contribution goes into one two three dour seven eight rows and columns of 

the final global equation system. So, with this understanding and also one more thing, we 

need to assemble the equivalent nodal load vector only along side three one or one three. 

Because, only along that element edge traction is specified and traction value that is 

specified with respect to the coordinate system that is defined is acting in the positive 

direction. So, it is going to be t r and its value is going to be 5000 psi.  
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So, with these understanding let us gets started and this is constitutive matrix definition 

and substituting Youngs modulus, Poissons ratio values that are given for this problem 

we get c to be this one. 
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And looking at the geometry of these two triangular elements, we can easily figure out 

what are the coordinates of all the nodes. So, element one comprises of nodes one four 

three and the corresponding coordinates geometry coordinates are noted and all the 

coefficients are calculated.  
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Once we have this information, one more thing that we require is we need to find what is 

the area of element one, this can also be obtained from the nodal coordinate information 

and the centroid coordinates and to evaluate epsilon theta we require this quantity. 
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Similarly, these two quantities are required to evaluate epsilon theta are to get the third 

row of the strain displacement matrix of Axisymmetric problem, when we are using 

linear triangular elements. 
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So, b matrix finally, b matrix evaluated at the centroid is given is obtained like this. So, 

using this we can easily get the element stiffness matrix. 
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So this we did because, the traction applied is uniform traction and also if you want more 

accurate evaluation of the stiffness matrix. As I mentioned earlier, one can use numerical 

integration scheme that we discussed earlier instead of using one point rule, where we 

evaluated the stiffness matrix only at the centroid. So, now if you see the model load is 

applied along the edge three one or one three, which actually is a part of element one. 

(Refer Slide Time: 43:57) 

  



So, applied load vector or equivalent nodal load vector, we need to assemble for side one 

three or three one and to do that, we need to note down what are the various traction 

components t r t z and also length of side three one. 
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So, once we have this information, we can plug in into the formula that we already 

derive for uniform traction components, equivalent nodal load vector for three nodes 

axisymmetric linear triangular element, and we please note that we do not need to 

assemble this equivalent nodal load vector for the other edges or sides because, no 

traction is specified over the rest of the model. 
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Now, let us go to element to and assemble the element stiffness matrix, noting down the 

special coordinates of all the three nodes. We can calculate the coefficients fs bs and cs. 
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Also, we can calculate what is the area of element two and the centroid of element two 

with respect to the coordinate system that is, defined and then strain displacement matrix 

evaluated at centroid of element. Once we have this we can get element stiffness matrix 

for element two. 
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So, we obtained element stiffness matrix for element one and two, we need to before we 

assemble the global equation system. We need to know where the contribution from 

element one goes in, where the contribution from element two goes a into the global 

equation system that, information is noted here for clarity. 
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So, element one contribution goes into one two seven eight five six rows and columns 

and the locations are given in the matrix.  



(Refer Slide Time: 46:44) 

  

Element two contributions go into one two three four seven eight rows and columns and 

the corresponding global locations are also given in the matrix. 
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So, with this information we can easily assemble the final global equation system or if 

somebody is smart enough, they can directly write the reduced equation system, because 

w 1, w 2, w 3, w 4 are all 0. We can eliminate those rows and columns and write the 

reduced equation system directly. So, this is full complete global equation and the 



boundaries conditions are essential boundary conditions are w 1 is equal to 0, w 2 is 

equal to 0, w 3 and w 4 are 0. 
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So, eliminating the rows and columns corresponding to these degrees of freedom, it is w 

1 to w 4. We get the reduced equation system, which we can solve for u 1 to u 4 radial 

displacement components at all the four nodes. So, once we have this nodal solution, we 

can calculate we can do post processing like calculating stresses and strains.  
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Strains and stresses at element centroid can be computed using the element b bar matrix 

that, we already have because we evaluated strain displacement matrix at the element 

centroid. But if somebody is interested at some other point mu b matrix needs to be 

evaluated first before we calculate stresses and strains. So, for illustration purpose 

calculations of stresses and strains at the element centroid are shown here. So, strain at 

the element centroid is given by b bar transpose times d and stress at element centroid is 

given by a sigma bar is equal to c times epsilon bar. 
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So, for element one strain is given by this and using because, for element one and 

element two, centroid is different. We need to calculate this separately for element one 

and element two. 
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Strain, once we know the strain for element one, we can calculate stress for element one 

all the stress components for element one. 
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Similar exercise, we can repeat for element two and also we can calculate stresses for 

element two.  
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So, in this lecture we have seen the governing differential equation for axisymmetric 

problems, and also finite element equations for three node linear triangular element. In 

the next class, we will see quadrilateral element for solving axisymmetric problems. 


