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In the last class, we have seen the derivation of governing equations for elasticity 

problems under plane stress and plane strain conditions. For completeness, let us look 

those, what we did in the last class once again. We derived this second order differential 

equation starting with equilibrium equations in x in x direction. 
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Substituting stresses in terms of strains using stress strain relation, and then substituting 

strains in terms of displacements. Using strain displacement relations, and after doing 

couple of mathematical manipulations, we finally arrived at this equation. And similarly, 

starting with second differential equation sorry second equilibrium condition, which is 

equilibrium condition in the y direction. Sum of all forces in the y direction is equal to 

zero. Applying that condition, we get the second equilibrium equation. And following 

similar steps, as we did for getting the first equation shown here that is expressing 

stresses in terms of strain; strains in terms of displacements.  



And doing couple of mathematical manipulations finally, we arrive at the second 

differential equation, which is also second order differential equations. And so, solution 

for a three dimensional elasticity problem is basically solving these two coupled second 

order differential equations subjected to boundary conditions. u and v specified on part 

of boundary and you can notice here, these two are second order differential equations. 

So, those boundary conditions of order 0 are essential boundary conditions and those 

boundary conditions of order one are natural boundary conditions. 

And natural boundary conditions are specified surface tractions and when I made this 

statement that, the specified surface forces are first order equations. That is based on 

what we did similar to what we did in last class, that is expressed tractions in terms of 

stresses and stresses in terms of displacements via stress strain and strain displacement 

relations. Finally, we can see tractions are related to first derivative of displacements, 

which are natural boundary conditions. 
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And usually, these tractions the prescribed surface forces in practical problems, we 

usually specify normal and tangential components. So, if one is interested in getting 

traction component in x and y direction form, the components which are specified 

normal to the surface and tangential to the surface. Then we can use this relation, which 

we also we have seen this in the last class and also tractions can be expressed in terms of 

stresses internal stresses; writing equilibrium equation for a triangle showing the traction 



surface tractions and internal stress components. In the last class, we have seen how to 

get this equation. 

Similarly, tractions in the y directions can also be expressed in terms of stresses and now, 

replacing stresses in terms of strains and strains in terms of displacements. We can see 

that, traction in x direction is indeed related to displacements derivative of 

displacements. Similarly, traction in the y direction is related to derivative of 

displacements. So, natural boundary conditions are indeed first order equations. So, 

solving an elasticity problem is basically solving coupled coupled differential second 

order differential equations that we have seen. In the previous line subjected to the 

boundary conditions that u and v are specified on a part of boundary or tractions are 

specified on a part of boundary. 
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So, now before we proceed to derive the finite element equations for a specific element, 

we need to know, what is the equivalent potential equivalent energy potential for plane 

stress; plane strain problems are basically for elasticity problems is given by this. 

Potential energy functional is equal to phi is equal to U minus W, where U is nothing but 

strain energy and which is given by this equation and W is nothing but work done by the 

applied forces.  



And if applied forces are point forces or concentrated forces, then work done by the 

concentrated forces is simply the product of applied forces and corresponding 

displacements at the point of application of load. But if work is if applied applied forces 

are distributed forces then, work done due to applied forces can be calculated using this 

relation. In both these relations U and W, h thickness is assumed to be constant. So, it is 

pulled out of the integral and if it is not constant, then we need to take inside the integral 

and then do the integration.  

And if these tractions T x T y basically, if they are given in terms of T n and T s that is 

tangential and normal components, in that case work done by the distributed forces can 

be calculated using this relation. So, this is how, we can calculate U and W. Once we get 

U and W, we can plug in into phi; phi is equal to U minus W. And apply the condition 

that variation of phi is equal to 0 to get the final element equations. So, now let us start 

with by taking a triangular element three node linear triangular element and derive the 

element equations for that particular element. 
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So, what we the element that we have taken is constant triangular element, because the 

three node triangular element strain is going to be constant over the entire element, 

which we have seen earlier and so it is called constant strain triangular element. So, the 

differential equations involve u and v, which are displacements in x and y direction that 



is what, you have seen a few minutes back. We need to solve coupled second order 

differential equations, which are in terms of u and v.  

u and v are nothing but displacements in the x and y directions, which are functions of 

going to be functions of x and y. So, we require two different trial solutions; one for 

displacement in the x direction; the other for displacement in the y direction. With three 

nodes a linear solution for displacements in each direction for displacements in each 

direction can be specified. So, now let us consider a typical three node element and x try 

to express this displacement at any point in the element in terms of nodal values and 

shape functions. 
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This is a typical three node element and as you can see from the figure, there are two 

unknown displacements at each node and they are called nodal degrees of freedom. And 

we can use linear trial solution for u displacements, because we have three nodes. So, 

when we are deriving based on polynomial based trial solution, the shape functions if we 

are deriving based on polynomial based trial solution then, we usually start out with a 

polynomial, which is having number of coefficients is equal to number of nodes.  

So, displacement in the x direction or displacement in the y direction consists of or the 

trial solution for displacement in x direction, displacement in y direction consists of a 

polynomial, which is going to have three coefficients. And that polynomial since we are 



dealing with two dimensional case here, that polynomial is going to be a linear 

polynomial in x and y directions. So, there are two unknown displacements at each node 

called nodal degrees of freedom. 
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Linear trial solutions, u is equal to alpha 1 plus alpha 2 x plus alpha 3 y. This is similar to 

what we did when we derived shape function for three node triangular element. If you 

recall, we started out with a polynomial something like t is equal to a naught plus a 1 x 

plus a 2 y. So, following similar logic we can express u, which is displacement in the x 

direction like this. Similarly, displacements in the y direction like this, where alphas 

alphas and betas are unknown parameters or unknown coefficients. Similar to a naught, a 

1, a 2 you have seen earlier when we are deriving shape functions for linear triangular 

element starting with a linear polynomial. These trial solutions can be expressed in terms 

of shape functions using methods that we discussed earlier.  
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So, u can be written as N 1 u 1 plus N 2 u 2 plus N 3 u 3. Similarly, v can be written as N 

1 v 1 plus N 2 v 2 plus N 3 v 3, which can be expressed in matrix and vector form in this 

manner. And if you carry out the multiplication, we indeed get what I mentioned just a 

while ago that is, u is equal to N 1 u 1 plus N 2 u 2 plus N 3 u 3; v is equal to N 1 v 1 

plus N 2 v 2 plus N 3 v 3. Here N 1, N 2, N 3 are shape functions, which are going to be 

linear in x and y and the derivation of the shape functions is same as the procedure for 

derivation of the shape functional is same as what we have seen earlier.  

So, this N 1, N 2, N 3 shape functions can be calculated, once we know the nodal 

coordinates of all the nodes. So, N 1 is given by this, N 2 is given by this, and N 3 is 

given by this. Here, you can see some intermediate coefficients are defined f, b and c’s. 

So, this f 1, f 2, f 3, b 1, b 2, b 3, c 1, c 2, c 3 these can be calculated based on 

information of nodal coordinates of that particular element, where here also there is 

another quantity capital A. It is nothing but area of triangle, which also can be found, 

once we know the nodal coordinates. 
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So, if this is a triangular element that we are looking at, then area can be calculated based 

on the nodal coordinates. And f 1, f 2, f 3, b 1, b 2, b 3, c 1, c 2, c 3 can be calculated 

based on the information of nodal coordinates. And this is how, we can express 

displacement in x direction and y direction in terms of finite element shape functions for 

that particular element and the nodal values. And this two trial solution that is 

displacement in the x direction and displacement in the y direction can be written 

together in one equation.  
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So, we will be looking at how to derive element stiffness matrix, because we have seen 

how to express displacement in x direction y direction in terms of finite element shape 

functions and nodal values. Now, we are ready to derive element stiffness matrix. As I 

just mentioned, the trial solution x and y direction can be written together in a matrix 

form. Or compactly, it can be written as psi is equal to N transpose d, where n comprises 

of all the or N is the vector or matrix consisting of all the shape function expressions. 

And d is nothing but, vector of nodal parameters or nodal unknowns and here, this is 

how, displacement in x direction and y direction can be interpolated using finite element 

shape functions and nodal values. But if you go back and see, the strain energy equation 

u; it consists of strains. So, in order to use potential energy functional, the strain energy 

and work done by the applied forces must be expressed in terms of displacements or in 

terms of nodal unknowns. Strain energy in terms of nodal unknowns can be written can 

be written as follows. 
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This is strain energy definition and strain is defined like this. derivatives It consists of 

derivatives of displacements with respect to x and y and just now, we have seen 

displacement u and v in terms of finite element shape functions and nodal parameters. 

So, we can take derivative of those and we can write it in a matrix form. Then, this is 

what we are going to get. Strain in terms of finite element shape function derivatives and 

nodal parameters, which can be compactly written as epsilon is equal to b transpose d. 



So, now with this, we are able to express strain epsilon in terms of nodal parameters and 

b matrix consists of derivatives of shape functions. So, substituting this epsilon into the 

equation for u, we get this one. 
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Where because nodal parameters are independent of are not are not functions of x, they 

can be pulled of the pulled out of the integral and stiffness matrix element stiffness 

matrix, k is defined like this. And if you notice B matrix that is strain displacement 

matrix for this particular element three node linear triangular element, it is a constant. It 

is not a function of spatial coordinates and if material that we are dealing with is also not 

a… material properties are also not functions of spatial coordinates. Then, C matrix can 

also be pulled out to the integral. Finally, this entire thing reduces to this. 

Please note that, this is valid only under the conditions that you are using three node 

linear triangular elements, which is constant strain triangular element. And if material 

properties are not functions of spatial coordinates x and y, only under that case stiffness 

matrix can be directly expressed like this; h times B times C times B transpose times area 

of triangle, that you are dealing with. So, this if not we need to perform this or we need 

to carry out integration to get the element stiffness matrix, for that we can you adopt 

some numerical integration techniques for corresponding to triangular elements, which 

we have seen earlier. So, now this is about strain energy and now, we need to look at 

work done by the applied forces. 
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Concentrated forces applied at nodes: It is very simple. If applied nodal forces are 

denoted by F 1 x F 1 y etcetera; that is nodal force applied at node 1 in x direction; nodal 

force applied at node 1 in the y direction, then the work done is given by the simply 

product of force at that particular node in the corresponding direction as the displacement 

and sum it up. We are going to get work done by the applied nodal forces concentrated 

forces. And this can be compactly written like this, where a vector consisting of nodal 

forces is defined and d as usual is nodal displacement vector, but if the forces are not 

concentrated forces, then forces distributed along element edges needs to be evaluated. 
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Let T x, T y be the components of traction in x and y directions. Then, work done is 

given by, logic is similar; force times force in a particular direction times displacement in 

the same direction is we what we have to do to get work done. So, it is given by this; 

work done due to traction. That is why, W subscript T is written is given by and again h 

thickness is h; thickness is assumed to be constant. So, h is pulled out of the integral and 

psi is nothing but, it is displacement vector in u direction consisting of displacements in 

the u direction, in the x direction and y direction. So, psi transpose T gives us 

displacement in x direction times T x displacement plus displacement in the y direction 

times T y.  

So, psi transpose T is that and substituting psi in terms of nodal parameters and finite 

element shape functions. We can get the we can further write this W as d transpose h 

integral N T d S, which can be compactly further written by defining a vector Q T, which 

is nothing but equivalent nodal vector. Because we have distributed load and that 

distributed load, we are converting into equivalent nodal loads. So, that is why Q is 

equivalent node nodal load vector. But, as we discussed if T instead of T x T y, normally 

we express or when we prescribe surface traction, it is easy to find what are the normal 

tractions and surface normal tractions and tangential components of traction. 
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So, in that case if normal and tangential components are specified, then we can get T x T 

y based on direction cosines of the outer normal for that particular edge. So, how to 

calculate n x n y? Knowing the coordinates of end points of a line segment, the direction 

cosines of outer normal can be calculated. Please note that, we are carrying out this 

integration along each of the element edges. So, we have to take one by one each of these 

edges. So, once we know the nodal coordinates of the line joining or line passing through 

that edge, then we can easily calculate n x n y of outer normal of that particular edge. 
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So, this is how we can calculate. Suppose, we are interested along edge 1-2; so, what we 

need to do is we need to know, what are the coordinates of the end points of the line 

segment joining 1 to 2? x 1 y 1 are the nodal coordinates of node 1; x 2 y 2 are the nodal 

coordinates of node 2. So, with that information, we can easily calculate what are the 

direction cosines of outer normal to this particular edge 1-2? Using this relation, n x can 

be calculated using this relation; n y can be calculated using this relation, where L is 

length of this edge 1-2; length of the line segment joining nodes 1 and 2, which can also 

be calculated based on the information of nodal coordinates. And we need to carry out 

integration to calculate equivalent nodal vector. 
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These integrations can be performed in a closed form, if specified tractions surface 

tractions T x, T y are simple functions of x and y. And when I say simple functions, for 

that matter if it is T x, T y are constant, then it is much easier. So, the simplest case is 

when T x, T y are specified as constant along one or more sides of element. So, for 

illustration purpose, let us take this triangle and assume that uniform pressure is applied 

alongside 1-2.  
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So, we need to know, what are the shape functions along side 1-2? Please note that, 

alongside 1-2, shape function of node 3 is going to be zero; because node 3 is not part of 

side 1-2. Along this side, only non 0 shape functions are alongside 1-2 only non 0 shape 

functions are n 1 and n 2. And the equations or expressions for these shape functions 

alongside 1-2 can easily be obtained, using Lagrange interpolation formula knowing the 

nodal coordinates of nodes 1 and 2. 
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Based on this equation, these equations are obtained using Lagrange interpolation 

formula that we discussed many times earlier. So, and here L 1-2 is nothing but length of 

side 1-2 or element or line segment length of line segment joining nodes 1 and 2 and 

again shape function of node 3 along this side is 0. So, complete shape function matrix 

for side 1-2 can be written like this; n 1 0 first row consists of n 1 0, n 2 0, n 3 0 where n 

3 is zero. So, we are going to get at that location 0 value and the second row consists of 0 

n 1, 0 n 2, 0 n 3; again n 3 is equal to 0. So, complete shape function matrix looks like 

this for side 1-2. So, we got what we want that is we obtained the shape function vector 

alongside 1-2. So, using this, we can easily calculate equivalent nodal vector.  
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And we assumed alongside 1-2 or we are considering here a case, where tractions are 

uniform; they are constant. So, T x T y components are not functions of x. So, 

integration can easily be integration can easily be carried out; because the functions, 

which are appearing inside the integral are fairly simple. So, finally simplifying this, we 

get Q as h L over 2 sorry L 1 2 over 2 and at times vector consisting of T x T y, T x T y 0 

0 and this is equivalent nodal vector alongside 1-2. 
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Similar expressions for equivalent nodal vector equivalent nodal load vector can be 

written for other sides, side 2-3, and 3-1. And it is interesting to note that, for uniform 

pressure the equivalent nodal load vector is obtained by simply dividing the total force 

equally among two nodes on the side; because traction is uniform. So, total load can be 

divided into two parts and can be assigned to each of the nodes. Instead of carrying out 

all this integration, because anyway the traction is uniform; it is not a function of x and y. 

So, this is how equivalent nodal load vector can be evaluated, if tractions are specified 

and now, let us discuss how to calculate work done by the body forces. 
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Please note that, body forces are also distributed; but they are distributed over entire 

element. For example, gravity and inertial forces again for illustration purpose, let us 

assume uniform body force with components b x b y. Since we are dealing with two 

dimensional problems plane stress, plane strain, we are assuming body force components 

or only we are considering only force component in x and y directions. Work done is 

given by, work done due to the body forces; that is why, it is written as W subscript BF, 

BF stands for body forces. It is again same logic; displacement times force acting in that 

particular direction; displacement component times force acting in that direction. 

Based on that, we get we can calculate work done by the body forces, using this formula. 

Or it can be compactly written as W is equal to d transpose Q B, where Q B is defined as 

h times integral N d A times body force. A vector consisting of body force components 

and you can notice here to carry out this integration. If the expressions for shape 

functions are fairly simple, we can easily calculate this; or if the expressions for shape 

functions are complicated, in that case we can use a formula, which we already seen 

earlier. But for completeness I am reproducing that formula here. 
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These integrals can be evaluated by using the following formula, which we have seen 

earlier. So, depending on the integrant that you have and if it consists of only the shape 

function expressions or if it consists of only shape functions, then we can use this. 

Otherwise, we need to use numerical integration that we discussed earlier. So, adopting 

either of this; we can get equivalent nodal vector due to the body forces. So, we 

discussed how to calculate strain energy and how to calculate work done by various 

forces. 
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So, we are ready to get element equations. All quantities needed for potential energy 

functional have now been expressed in terms of nodal unknowns. So, writing potential 

energy functional that is U times W, W consists of… it can be the contribution can come 

from concentrated forces, tractions body forces. So, we are including all that, when we 

are writing potential energy functional and applying stationarity condition on this 

potential energy functional, we get the element equations. k d equal to Q NF Q plus Q T 

plus Q B. Q NF is a vector consisting of concentrated forces; Q T is equivalent nodal 

load vector due to tractions and Q B is equivalent nodal vector due to distributed forces. 

So, solving this, we get nodal unknowns or nodal displacements. So, once we have nodal 

displacement information, we can easily calculate strains. And from there, we can 

calculate stresses and do all kinds of post processing and as far as, assembly this 

whatever we discussed here so far is for one element. So, we need to write this kind of 

equations for all elements. Once we get equations for all elements, the assembly process, 

and applying essential boundary condition and solution procedure is similar to what we 

discussed or what we have been discussing in the last few classes. 
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Once the nodal displacements are known, strains and stresses for each element can be 

obtained from the following equations. Strains can be calculated using this strain 

displacement relation. And once we know strains, we can calculate stresses which 

depend on whether you are you started out with plane stress assumptions or plane strain 



assumptions, you need to use corresponding constitutive matrix. So, if it is for plane 

stress, this is how you can calculate. 
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Similar expression can be written for plane strain case. And note that, since B matrix is 

constant, stresses or going to be constant over entire element. So, to illustrate these 

points much better way, let us take an example. 
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Find displacements and stresses in a cantilever plate using two triangular elements. This 

is a cantilever plate. From the information that is given in the figure, we can easily figure 

out what are the nodal coordinates. And the geometric geometrical details and also 

material property details and load details are given both in FPS units and SI units and 

since the figures for each of these quantities are round figures in FPS units. We will be 

doing this problem in FPS units for but just for convenience.  

Other than that, procedure it is going to be exactly same irrespective of whatever units 

are being adopted and the figure shows figure is drawn in FPS units. So, whatever 

coordinates information that we get from the figure, please read it as in inches 

corresponding to the nodal coordinates. So, the cantilever plate is discretized using two 

triangular elements and all the nodes are numbered and the two triangular elements are 

also numbered. Node element 1 comprises of nodes 1, 2, 3 taken in counter clockwise 

direction.  

Similarly, element 2 comprises of nodes 1, 3, 4 again when we look in the counter 

clockwise direction. And we also have the nodal coordinate information given and all the 

material properties and thickness is also given and the load value is also given. And 

please note that, since we are using three node triangular element, p matrix is going to be 

constant for each of these elements. So, now noting all these we can write element 

equations for element 1, element 2 separately. And then finally, we can assemble global 

equation system based on the nodal connectivity.  

Element 1 is connecting nodes 1, 2, 3; element 2 is connecting nodes 1, 3, 4 and at each 

node since we are dealing with elasticity problem 2 D elasticity problem, at each node 

we are going to get two nodal degrees of freedom. So, total final equation system is 

going to be 8 by 8 and element 1 contribution goes into 1 to 6 rows and columns and 

element 2 contributions goes into 1 to 5 to 8 rows and columns. So, it goes into 1, 2, 5, 6, 

7, 8 rows and columns from element 2. So, noting all this information, we can quickly 

assemble the element equations. These are corresponding to element 1. Area of triangle 

can be calculated based on the formula that we discussed earlier. 
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B matrix for element 1. Assuming plane stress condition, C matrix is given by this. 

Substituting young’s modulus poisons poisons ratio values which are given. And since 

we are dealing with a three node triangular elements, since B matrix is constant, we do 

not need to do numerical integration to get element stiffness equation or element stiffness 

matrix. We can directly carryout multiplication h times A times B times C times B 

transpose. 
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So, carrying out those multiplications of matrices, we get this; element stiffness matrix 

for element 1. 
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Similar operations can be carried out by noting the nodal coordinate information for 

element 2. It turns out that, B matrix is as shown here for element 2. 
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And similarly, element stiffness matrix can be calculated. And now, we got element 

stiffness matrix for element 1 and element 2. 
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So, now we are ready to assemble element equations. As I mentioned, each node has two 

degrees of freedom. So, total global equation system is going to be 8 by 8. So, we need 

to clearly note down, where the contribution from element 1 goes in and where the 

contribution from element 2 goes in to the global equation system. So, noting nodal 

connectivity, we can easily figure out exactly at what locations element 1 contribution 



goes in, which is shown in location vector. Once we have this information, global 

locations for coefficients in element matrices can be written or can be noted down in this 

manner. This information helps us to assemble the global equation system. So, this is for 

element 1. 
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Similarly, for element 2 nodal connectivity, corresponding location, vector global 

locations for coefficients in element matrices. So, this matrix gives us global locations 

for element 2. So, using this information, we can assemble assembling element equations 

and noting essential boundary condition, the global equations are as follows.  
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Essential boundary conditions are also specified here and the equations system that is 

shown. Please note that, u node 1 and node 4 are fixed. So, displacement in x direction, 

displacement in y direction at these locations; that is, at node 1 and node 4 are zero. And 

also note that, wherever displacements are specified as zero, at those locations unknown 

reactions are going to be there; that we need to calculate. So, reactions wherever 

displacements are specified as zero, reactions are going to be developed, which are 

unknown. 
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The corresponding locations in the force vector are replaced with R x 1, R y 1, R x 4, R y 

4 respectively. So, in this equation R x 1, R y 1, R x 4 and R x R x 4 and R y 4 are 

unknown reactions corresponding to known displacements at nodes 1 and 4. Known 

displacements here are 0 displacements. And if you see that equation global equation 

system, four unknown nodal displacements are required to be calculated; u 2, v 2, u 3, v 

3 and these can be calculated from middle four equations. 

And eliminating the rows and columns in the global equation system corresponding to 0 

degrees of freedom, we get reduced equation system. Since the specified displacements 

are 0 at node 1 and 4, the first two and last two columns will not contribute anything. So, 

the resulting reduced equation system is given by this, which can easily be solved for the 

unknowns u 2, v 2, u 3, v 3. Again solution is given in FPS units.  
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But procedure wise, it is not going to be anything different and now, we got the 

displacements.  
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We can easily calculate element quantities corresponding to element 1; strains and then 

stresses. Strains can be obtained using this relation and please note that, strains are going 

to be constant over the entire element. 
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Hence, once we got strains, we can calculate stresses using constitutive matrix 

corresponding to plane stress condition. 
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And once we got stresses, we can calculate using these quantities; principal stresses for 

subsequent usage in failure criteria and all other details required; angle between sigma 1 

and x sigma x and effective stress.  
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And these calculations can even be repeated for element 2. These are the strains for 

element 2; stresses for element 2.  



(Refer Slide Time: 50:06) 

              

(No audio from 50:08 to 50:15)  

Similar quantities reported as for element 1; that is, principal stresses, sigma 1, sigma 2 

and the angle between sigma 1 and sigma x and effective stress.  
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Please note that, strains are constant over each element and stresses are also constant 

over each element. And to actually to really check the quality of solution, the normal and 

tangential stresses along common interface needs to be computed and see, whether they 



are matching or not. What I mean by that is we need to calculate these components using 

stress transformation.  
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So, what I mean by that is for element 1, please note that; for both elements, side 1-3 is 

common. So, along this interface 1-3, we can calculate normal stresses and tangential 

stresses from element 1 and from element 2 and see, whether they are matching or not. If 

the discretization is enough, then normal and tangential component of stresses along this 

interface calculated from element 1 and the element 2 are going to match. So, now let us 

do the calculation for element 1; this is element 1. Actually in this figure, even the values 

are shown.  

But how to calculate those values will be shown shortly. So, just ignore those values for 

a while and concentrate only on the figure without those values. So, need to choose y 

prime from global node 3 to global node 1. So, that x prime is outer normal as shown in 

figure. So, that is how x prime y prime are defined and we know how x y are oriented. 

So, once we know how x y are oriented and how the new coordinate system x prime y 

prime are oriented, then we can easily find what is the angle between these two 

coordinate system.  

What is the angle between x axis and x prime axis? Using that information, we can easily 

calculate what are the normal and shear components along the interface 1-3 or 3-1. And 



for that, we require to note down what are the coordinates of… we need to note down or 

we need to know, what is the element length, line segment length connecting nodes 1 and 

3. So, for that we required to note down, what are the coordinates of node 3. Node 3 

coordinates are denoted with x 1, y 1 and node 1 coordinates are denoted with x 2, y 2.  

And here for calculation purpose, node 3 is taken as first node and node 1 is taken as 

second node. And from that, we can easily calculate what is the length and also we can 

calculate, what are the direction cosines of outer normal alongside 3-1. And once we 

have that information, we can easily calculate sigma x prime and tau x prime y prime 

using these relations. So, this is what I am emphasizing that, these values of sigma x 

prime tau x prime y prime values calculated from element 1 should match with element 

2. Let us see, whether they match or not. 
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So, from element 2 for element 2 alongside 1-3, let us define a coordinate system like 

this. Choose y prime from global node 1 to 3 and x prime, then x prime is automatically 

going to be outer normal as shown in figure. From this understanding, so here node 1 

along line segment 1-3 corresponds to node 1 of the global coordinate system and node 2 

corresponds to node 3 of the global coordinate system. So, the corresponding nodal 

coordinates are noted and also length is calculated. 



Once we have this, we can calculate, what are the outer normal or direction cosines of 

outer normal for this particular edge 1-3. Once we have this information, we can easily 

calculate sigma x prime tau x prime y prime using these relations. So, we calculated 

sigma x prime tau x prime y prime for both elements along the interface 1-3. So, we need 

to see whether these values match or not. So, these all these values are put side by side to 

see whether they are matching or not. 
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In the exact solution, stresses on two sides should be equal and opposite to each other. If 

the solution is exact and the solution shown or solution that we obtained is not very 

good. Because there is a large discontinuity in stresses across element boundaries; that is, 

normal stress values are not matching; also tangential stress components are not 

matching. So, that means the discretization that is adopted for solving this cantilever 

plate is not enough. 
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With only two elements, mesh is very coarse, and we obviously cannot expect very good 

results. As we increase the number of elements, the discontinuity in stresses should 

reduce. So and when if we really want increase the number of elements, then we cannot 

do that using hand calculations; we need to automate this. So, this is about a three node 

triangular element for solving plane stress, plane strain problems. And in the next class, 

we will be looking at four node quadrilateral element. 


