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Let us continue with what we left left behind in the last lecture. So, we will see some 

more examples on applications based on general two-dimensional boundary value 

problems. And as a part of that, in today’s lecture, we are going to see two-dimensional 

ideal, irrotational, incompressible fluid flows around an object. So, basically if you 

recall, what we did in the last class, we looked at torsion problem.  

Basically, once we get the governing differential equation and associated boundary 

conditions, we compare the differential equations, and the boundary conditions with the 

corresponding equations of general two-dimensional boundary value problems. And 

once we identify the corresponding coefficients, we can easily write the finite element 

equations. So, that is what basically we did. So, similar manner let us solve some 

problems in today’s class using or the finite element equations; that we already 

developed for general two-dimensional boundary value problems. 
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So, ideal fluid flows around that irregular object. The problem of two-dimensional ideal, 

irrotational, incompressible fluid flow around an object is solved using either stream line 

formulation or potential formulation. So, there basically there are two approaches 

through which, we can solve this problem, and both formulations are presented here that 

means, we are going to look at the both the formulations. So, first let us start with stream 

line formulation. 
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The basic parameters in the stream line formulations are shown in figure below. The 

field variable is here for stream line formulation. The field variable is the stream 

function, which is denoted with psi and it is related to the fluid velocities in x and y 

directions. And also, the solution domain is extended far enough from the obstruction. 

So, that there is no effect of obstruction on the flow characteristics characteristics. 
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So, the fluid velocities in x and y directions are related to stream function psi, which is 

function of x and y through these equations. That is, velocity in the x direction is 

derivative of psi with partial derivative of psi with respect to y. Velocity fluid velocity in 

y direction is equal to minus of partial derivative of stream function with respect to x. 

The governing differential equation is as follows. So, basically we need to solve this 

differential equation subjected to some boundary conditions imposed on psi. 
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The fluid rate between any pair of stream lines is given by this equation Q i j is equal to 

psi i minus psi j. That is, i and j are any pair of stream lines and also the solution domain 

is extended far enough from the obstruction. So, there is no effect of obstruction on the 

flow characteristics. And for the figure given here, we can easily identify the boundary 

conditions. 
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The boundary conditions are as shown. That is, at the far left end, V x is specified; V y is 

equal to 0 and at the far right end, V y is equal to 0 again. And stream function at the top 

is denoted with psi subscript t and stream function at the bottom is denoted with psi 

subscript b. The constant values of stream lines at the top and bottom are determined 

from the flow rate. So, what is the difference between psi t and psi b? That is given by 

the flow rate. 
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Now, let us consider an example. Consider flow around cylinder of diameter 4.5 

centimeters. Away from the cylinder, the fluid velocity in the horizontal direction is V x 

is equal to 5 centimeter per second. So, this is the problem. V x is specified; V y is equal 

to 0. The diameter of a cylinder is given as 4.5 centimeters and total width of flow is 

given as 12 centimeters. So, the constant psi values; that is, psi t and psi b as I just 

mentioned, it can be determined from the flow rate per unit thickness. Here thickness is 

assumed to be 1 unit. 
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So, flow rate or unit thickness is given by 12 times 1 times V x; that is, 5 centimeter per 

second and it comes out to be 60 centimeter cube per second. So, the difference that is 

psi t minus psi b is 60 centimeter cube sorry 60 centimeter cube per second. 

(Refer Slide Time: 08:09) 

 

So, the flow rate between any two streams stream lines is the different between them. So, 

and because of symmetry, the two stream lines are equal and actually because of 

symmetry, we can model only a quarter of this domain. In that case, psi t minus or psi t is 

going to be minus of psi b is equal to 30, which is half of 60. 
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A distance of ah 8.5 8.25 in front of cylinder is assumed to be enough for constant 

velocity condition; because we need to select solution domain far enough from the 

obstruction. So, that no effect of obstruction on the flow characteristics. Using 

symmetry, only a quarter of solution domain is to be modeled and the quarter model is 

shown are along with all the boundary conditions. Since V y is equal to 0, partial 

derivative of stream function with respect to x is equal to 0 on the left extreme left edge. 

 And because of symmetry, partial derivative of stream function with respect to y, which 

is indirectly related to to the V y; velocity fluid velocity along y direction is also 0 along 

the line of symmetry on the right hand side. And again, since the model is symmetry; 

because of symmetry even psi is equal to 0 on the bottom edge of this quarter model. 

Similarly, the edge which is coinciding with the cylinder psi is equal to 0 and psi is equal 

to 30 and that is coming from flow rate, which we just calculated. So, this is the quarter 

model of the solution domain. So, we need to solve the differential equation a second 

order differential equation; that we have seen earlier in terms of psi subjected to these 

boundary conditions. 
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So, the boundary condition on the left vertical face is partial derivative of psi with 

respect to x is equal to 0; because of assumption of uniform flow in the x direction there. 

The boundary condition on the right right vertical face is partial derivative of stream 

function with respect to s is equal to 0, because of symmetry. And the boundary 



condition along the top face of the model is psi is equal to 30. Lower side of the model 

corresponds to the middle of entire solution domain. So, stream function is equal to 0 

there. So, these are the boundary conditions. 
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So, we need to solve this second order differential equations subjected to these boundary 

conditions. So, that is the problem statement. Now, everything is given to us. Now, our 

job is to compare this governing differential equation with general two dimensional 

boundary value problems; the differential equation, that we have taken for general two 

dimensional boundary value problems. And the corresponding boundary conditions, we 

need to compare with the boundary conditions of this particular problem. Identify the 

coefficients and we can actually write the finite element equations.  
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So, now let us look once again general two dimensional boundary value problems. This 

is a statement, that we started out with and this needs to be satisfied over the domain A 

subjected to any of these boundary conditions; essential boundary condition and natural 

boundary condition. 
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And using Galerkin criteria, what we did is, after substituting finite element 

approximations, a complete equations for general two dimensional boundary value 



problems reduces to this; where, each of these k x, k y, k p, k alpha, r beta, and r q are 

defined here. 
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And for linear three node triangle element, since the shear functions are very simple for 

linear triangle, it is possible to carry out all integrations in closed form. Assuming k x, k 

y, P, Q are constant over element to get element equations in explicit form. So, for three 

node triangle element, k x turns out to be this; after multiplication of the two matrix two 

vectors, we get this. 
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Similarly, k y and k p and here, since the components of P are not going to be constant, 

we need to perform some numerical integration. Terms in k p matrix are not constant. 

Fortunately, simple formula is available for integrating shape functions over triangle. 
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This is the formula. So, applying this formula, all the parameters in that formula are 

defined; alpha, beta, gamma. N 1, N 2, N 3 are the three shape functions of the linear 

triangular element. A is the area of triangle and symbol exclamation is for factorial and 

using integration formula, the terms in k p matrix can be evaluated like this. 

(Refer Slide Time: 15:50) 

 



And then, we required to evaluate r q. Once we identify q, what is q? We can evaluate r 

q. For evaluating r q also, we can use this formula and one component of that r q is 

simplified and shown the details are shown. And carrying out similar kind of 

integrations, we can get all components of r q. So, therefore r q is given by one third Q 

times A and 3 by 1 column vector consisting of all 1’s. 
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And now coming to the line integrals, once we identify once we carefully compare the 

given boundary conditions with the corresponding boundary conditions of general two 

dimensional boundary value problems, we can identify what are the corresponding 

parameters? And we can assemble the boundary integrals, k alpha. For illustration, k 

alpha is given here; it is k alpha evaluated along side 1 2 details are given here. The 

shape functions of nodes 1 and 2 can be obtained using one dimensional Lagrange 

interpolation formula. And simplification of this leads to the similar integrations can be 

carried out along the other two edges. 
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Similarly, r beta along side 1 2: So, all these procedures, which we have seen earlier 

needs to be repeated. 
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Once we identify the corresponding parameters for this ideal fluid flow around an 

irregular object. So, for side 2-3, 3-1 integrals can be evaluated in similar manner and 

only difference is going to be the placement of zero’s in the matrices consisting of shape 

functions. 
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And for side 23 and 31, k alpha and r beta are looks like this. So, once we identify the 

corresponding coefficients, we can get the element equations. And once we get element 

equations, we can get the global equation system based on nodal connectivity. And after 

imposing the essential boundary conditions, we can solve for the nodal values.  

And once we solve for the nodal values here, for this particular problem of fluid flow 

around an irregular object, around an irregular object the nodal parameters are going to 

be the stream function values. Once we obtain stream function values, we can find partial 

derivatives of stream functions; stream function with respect to x and with respect to y 

and which are related to the velocity components or fluid velocities along x and y 

directions. 
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So, stream function calculations: Once the nodal values psi are known, stream function 

can be interpolated using element shape functions like this. 
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And also, we require sometimes we require this. What is the integral psi dx  dy over the 

element or entire domain? Here, the formula is written for one particular element. So, we 

know psi is equal to N 1 psi 1 plus N 2 psi 2 plus N 3 psi 3, which can be written in 

matrix and vector form. As it is shown on the right hand side of the equation and 

substituting, since psi 1, psi 2, and psi 3, the nodal the stream function nodal 



corresponding to the nodes. Nodal stream function values are constant. They can be 

taken out of the integral.  

And once we simplify this integral with N 1, N 2, and N 3 integrated over dx  dy or the 

entire area of the element for linear triangular element, these integrals turns out to be 

area of triangle divided by 3. So, substituting this this integral, that is psi integrated over 

the entire element can be approximated as area of the triangle element divided by 3 or 

area of triangle element multiplied by average value of a stream function at all the nodes. 

That is, A over 3 times in are in brackets psi 1 plus psi 2 plus 3 as shown in the right 

hand side of the equation last equation. 
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Now, we require to solve this differential equations subjected to these boundary 

conditions. So, proceeding in the way that is explained, we can get the element 

equations. And once the element equations are obtained, we can assemble the global 

equation system; impose the essential boundary conditions. Here, essential boundary 

conditions are psi is equal to 30 on the top phase; psi is equal to 0 on the bottom face. So, 

these are the essential boundary conditions. After imposing these essential boundary 

conditions, we can or we need to impose these essential boundary conditions; the nodes 

which are along these boundaries. 



Once we impose these essential boundary conditions, we can solve for the nodal values 

and do all kinds of post processing. So, now comparing with general two dimensional 

boundary value problems, see that for this for this ah sorry it is mentioned as torsion 

problem; it should be ideal fluid flow problem. So, for this particular problem, when we 

compare with general two dimensional boundary value problem, it turns out that k x is 

equal to k y is equal to 1; P is equal to 0 and Q is equal to 0. So, once again there is a 

mistake. It should be should be fluid flow problem, instead of torsion problem. 
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So, now let us see the solution, how it looks or how it converges, when we take different 

meshes? Here coarse mesh solution, by coarse mesh I mean the mesh; the quarter model 

consists of 24 triangle elements triangular elements. So, this is the quarter model and it 

consists of 20 nodes. The corresponding elements are here 24 elements 24 triangle 

elements triangular elements. So, using this discretization, we can solve this problem by 

imposing essential boundary conditions at nodes 9, 30, 70, 1, 2, 3, 4, 8, 12, 16, and 20. 

By imposing essential boundary conditions over these nodes and we can solve for the 

stream function value at other nodes. And here at each node, there is only one degree of 

freedom, which is going to be the stream function. 
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So, the nodal solution, the details are given here at all nodes 1 to 10 in this table and next 

table shows for the rest of the nodes. 
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(No audio from 23:59 to 24:10) 
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And solution derivatives and integral over each element, they are shown in this table. 

Partial derivative of stream function with respect to x, partial derivative of stream 

function with respect to y and integral of stream function over the element domain 1 to 9 

elements are shown here. 
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And rests of the elements are shown. The other slide 10 to 19, details are given here.  

(No audio from 24:48 to 25:01) 
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20 to 24 details are given here. We can also plot, what are called stream lines. 

Corresponding to the lines along which, stream function value is constant. 
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So, stream lines are shown in this figure. Also we can plot, derivatives of stream 

functions stream function with respect to x and y. 
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Derivative of stream function, x derivative of stream function, y derivative of stream 

function; because x derivative of stream function is related to velocity in the y direction 

and y derivative of stream function is related to velocity in the x direction. And they are 

shown here, contours of derivatives of stream function with respect to x and y. So, 

whatever solution finite element solution that is shown is using 24 triangular elements. 

The problem can be repeated by using finer mesh. 
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Solution domain is divided into 96 triangular elements. So, the discretization is shown 

here and everything remains same, except that size of the problem increases; because we 

require to solve for more number of nodal values. 
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So, let us look at, how the solution looks? Stream (( )) stream lines, psi is equal to 

constant; those lines are these. 
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And the derivatives of stream function, psi with respect to x and with respect to y. So, we 

solve this problem using 24 elements and 96 elements. 
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Let us see, how the solution matches? Both coarse and fine mesh gives a reasonable 

stream line that is expected. Because the solution itself may converge very fast; whereas, 

derivatives of solution require finer mesh. Fine mesh stream lines are smoother, which 

indicates a better solution. Derivative contours for coarse mesh show reasonable agree 

reasonable general trend. Fine mesh solution results show better velocity contours. And 

solution near left boundary is uniform; thus confirming our choice of constant velocity 

boundary at a distance of 8.25 centimeters away from cylinder. 
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So, now let us look at, solving this ideal fluid flow around an irregular object through the 

different formulation; that is potential formulation, potential formulation potential 

formulation. The velocity components are related to a potential phi by these relations. 

velocity fluid fluid velocity along x direction, y direction are related to the potential phi, 

where this equations. The governing differential equation, derived from Euler’s 

momentum equation and conservation of mass is this one. So, basically we require to 

solve this second order differential equation; solve for phi subjected to some boundary 

conditions.  
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Appropriate boundary conditions are as given here in the are are as shown in the figure. 

That is, essential boundary condition at the top and bottom are partial derivative of 

potential with respect to y is equal to 0. And V x is specified on the left vertical side and 

V y is equal to 0. So, we can solve or we can redo the problem that we already did, using 

potential function for potential formulation. 
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And we let us look at the problem statement. For the problem that we already looked at, 

consider fluid flow around cylinder of 4.5 centimeters and V x is 5 centimeters per 



second. Again, only a quarter of solution domain needs to modeled, because of 

symmetry. 
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And the boundary condition on the left vertical phase is partial derivative of potential 

with respect x is equal to phi; because V x, fluid velocity in the x direction at that 

location is already given in the problem statement. Because and this is because of the 

assumption of uniform flow in the x direction. Boundary condition on the right vertical 

phase is potential is equal to 0 or potential sorry potential is equal to constant; because of 

symmetry. For the numerical solutions a constant a value of 50 is assigned to psi sorry 50 

is assigned to the potential phi along this phase.  

This is arbitrarily assigned. Arbitrarily, since phi is equal to potential is equal to constant 

and that constant value is taken as 50 just ah just arbitrarily. The boundary condition 

along the top and bottom phase of this model are partial derivative of potential with 

respect to y is equal to 0, which are indicated in the figure and all the details of geometry 

are shown in the figure. So, now with this information, we can solve the second order 

differential equation with respect to the potential; for this particular problem, over this 

domain subjected to these boundary conditions.  

By comparing this with the problem statement of general two dimensional boundary 

value problem and then, we can actually get the finite element equations. And then, as 



usual the procedure is same; assembling and applying the essential boundary conditions 

solving for the for the nodal values. Here the nodal values, turns out to the potential 

value. And again this in this problem, at each node you have only one degree of freedom, 

which is going to be the potential phi value. 
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So, these are the boundary conditions that we already looked at.  

(No audio from 33:18 to 33:32) 

(Refer Slide Time: 33:35) 

 



So, now let us look at, again for different mesh solution, how it looks coarse mesh 

solution? Solution domain is divided into same number of elements as we did for the 

previous formulation; that is 24 triangle elements. The discretization is shown here. 
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And the potential potential lines that is, phi is equal to constant are shown in this figure. 

Equipotential lines; potential line with phi is equal to constant are called equipotential 

lines.  
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And x derivative of potential and y y derivative of potential, which are related to the 

velocity in the x and y directions respectively are shown here. The contours and these 

solutions correspond to 24 triangle elements, as we did earlier; we can actually go for 

finer mesh. 
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Solution domain is divided into 96 triangle elements. The mesh is shown here. 
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And the potential lines or equipotential lines obtained, using 94 or 96 sorry 96 triangle 

elements. The solution is shown here. 
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And contours of derivative x derivative of potential, y derivative of potential; they are 

shown here. 
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And let us see, let us make some observations. The potential lines are perpendicular to 

the stream lines. The stream lines are the lines that we obtained using the previous 



formulation. Stream function formulation and the potential lines are the lines that we just 

obtained using potential. Potential based solutions are similar to the stream line based 

solutions. Fine mesh results show better velocity contours than the coarse mesh.  

(No audio from 36:15 to 36:25)  

So, this is one application of general two dimensional boundary value problems. So, now 

let us look at other application, that is two dimensional steady state heat flow. 

As usual only thing is, we require to know, what is the governing differential equation 

and what are the boundary conditions? So that, we can make a comparison with general 

two dimensional boundary value problems; identify the coefficients and get the finite 

element equations. So, consider the problem of finding temperature distribution through 

long chimney like structures. A slice of t units thick of such body is shown in the figure. 

Assuming no temperature gradient through thickness, the problem can be modeled as 

two dimensional problems. So, we are assuming, no gradient of temperature through the 

thickness.  

(No audio from 37:38 to 37:47) 

The governing differential equations can easily be derived using conservation of energy. 

And to do that, consider a differential element as shown here. So, the following notation 

is used. Temperature at any point is denoted with dx y; k x, k y are the coefficients of 

thermal conductivity along x and y directions. The corresponding units are given and q x 

is the heat flux in the x direction and q y is the heat flux in the y direction and Q is heat 

generated for unit volume. So, using this notation and taking a differential element, we 

can derive the governing differential equation. So, let us consider this differential 

element, in which all quantities are indicated. 
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Heat flux along x direction, y direction and the heat generated and the dimensions of this 

differential elements are dx, dy and the coordinate system is also defined x y in the 

figure. So, using the convention that heat entering the volume control volume is positive 

and leaving and that is leaving is negative. 
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The conservation of energy dictates that, writing the equilibrium equation, we get this. 

And cancelling terms, which are higher order or cancelling terms, which are same in 



values, we get this. And substituting the heat flux, that is q x, q y in terms of thermal 

conductivity coefficients along x and y directions. 
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We know that, q x and q y are related to thermal conductivity coefficients through these 

equations. So, substituting q x, q y we get the following governing differential equations 

for differential equations for steady state heat flow in a two dimensional domain. And 

clearly, this is a second order differential equation and it is similar to what we already 

looked for general two dimensional boundary value problem. So, the governing 

differential equation is a second order partial differential equation. 



(Refer Slide Time: 41:14) 

 

And the boundary conditions are as follows. Temperature specified on part of boundary, 

insulated boundary, no heat flow across the boundary. In that case q n, n is nothing but 

outward normal to the surface; n x, n y are the components of the out word normal to the 

surface. Since this is insulated, so q n is equal to 0. And we can also consider the other 

case, heat loss due to convection on the boundary. In that case, q n is non going to be a 

nonzero value, which is going to be the function of convection coefficient and 

temperature of the ambience. 
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Heat loss due to convection on a boundary, in that case q n is given by this. So, we have 

two kinds of boundary conditions. Irrespective the boundary condition, what we need to 

do is, we need to compare the corresponding equation with the equation of general two 

dimensional boundary value problem and identify, what are corresponding coefficients, 

or corresponding parameters? 
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And here one more thing, care should be taken in assigning signs to q n term. And the 

sign convention adopted is heat flowing into the boundary is positive and heat flowing 

out of the boundary is negative.  
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This is the governing differential equations. So, this problem is clearly of general two 

dimensional boundary value problem form considered in the previous chapter or 

previous lectures. And if we compare, only thing that we observe is, when compare with 

the general two dimensional boundary value problem, P term is missing. So, P does not 

exist here or P is equal to 0; so K P is going to 0. Convection boundary condition, if it is 

insulated boundary, alpha and beta are going to be 0. If it is convection boundary 

condition, then it is handled by taking alpha is equal to minus h; beta is equal to h times 

T infinity. T infinity is nothing but, temperature of the surround. So, with this 

understanding, we can solve a problem. 
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So, now let us take an example. Determine temperature distribution through a square 

medium with which is a 6 inches in diameter. And here the problem is given in f p s units 

but does not matter as long as we stick with the consistent units. And pipe carrying hot 

liquid at 500 Fahrenheit is placed at the center as shown in the figure below. Outside 

temperature is at 100 Fahrenheit and k x, k y thermal thermal conductivity coefficients 

along x and y directions are given here. And and you can see here, this problem we can 

take symmetry into account and because of symmetry, only one eighth of the solution 

domain needs to be modeled.  

(No audio from 45:11 to 45:19)  

So, now let us look at, one eighth model. 
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Note because of symmetry only, one eighth of the solution domain needs to be modeled. 

So, this is the one eighth model. And once we take symmetry into account, the associated 

boundary conditions along the line of symmetry are shown there, that is partial derivative 

of T. T here is temperature; partial derivative of T with respect to normal is equal to 0 

along their lines of symmetry.  

So, as usual we need to solve the second order differential equation, partial differential 

equations subjected to these boundary conditions, that is T. T value at the inner diameter 

is 500 degrees Fahrenheit or sorry T value at the center is 500 degrees Fahrenheit or T 

value at the inner diameter and T value at the outer diameter outside is 100 degrees 

Fahrenheit. Subjected to those conditions and subjected to the natural boundary 

conditions along the line of symmetry, we need to solve this problem. 
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And as usual we can proceed with finite element discretization and here eight element 

solution is shown. So, finite element mesh with eight element eight triangle elements is 

shown here.  

(No audio from 47:11 to 47:21) 
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Element numbers are shown in bold. A 500 degree Fahrenheit temperature is specified at 

nodes 3, 6, 9. A 100 degree Fahrenheit temperature is specified at nodes 1, 4, 7. And zero 



flux is specified along 7-8-9 and 1-2-3 edges. So, let us see. So, 500 degrees Fahrenheit 

temperature is specified on on the nodes 3, 6, 9; because they those are the nodes, which 

are along the inner diameter of the inner diameter of the model. And temperature of 100 

degrees Fahrenheit is specified along 1, 4, 7; because that is the edge, which is in contact 

with outside of the model. And zero flux is specified along 7, 8, 9; which is one of the 

line of symmetry and 1, 2, 3 which is the other line of symmetry and the nodal so with 

that boundary conditions. 
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Nodal temperature values are computed, the model is solved. After applying the essential 

boundary conditions and the nodal temperature contours are shown here. 
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And numerical values at all the nodes are given in this table. Nodes 1 to 9. 
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And elements 1 to 8, heat flux along x direction, y direction; they are given here. 
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And now, the model is as we did for fluid flow case, a finite discretization is taken. So, 

32 element solution is shown here. For that, the finite element mesh looks like this. 
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And the nodal temperature contours and still model is refined further. Using 72 elements 

sorry it should be 72; instead of that, it is typed as 32; and 72 element mesh is shown 

here. And the nodal temperature contours, for 72 element solution is given in this figure. 

If we compare this solution with 8 elements, 32 elements and 72 elements, we can 

clearly see convergence of solution both for temperature and heat flux values. 


