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In the last class, we have seen the concept of isoparametric mapping, using which we can 

express the physical coordinates X Y in terms of parent element coordinates as s and t 

using shape functions of parent element and the spatial coordinates of the physical 

element. Basically isoparametric mapping is a relation, which relates physical 

coordinates of elements with the coordinates of parent element. After that we looked at 

how to calculate derivatives of shape functions with respect to the physical coordinates X 

Y, if the shape function of derivatives with respect to the parent element coordinates s 

and t are known; for that we require what is called Jacobian. So Jacobian matrix is the 

one which relates the derivative of shape functions in the physical element coordinates X 

Y with parent element coordinates s and t. To get the inverse relation that is if we know 

the derivatives of shape functions with respect to the parent element, how to get the 

shape function derivatives with respect to the physical coordinates X Y, we require 

determinant of Jacobian. 

And in the last class, we have seen for a valid mapping, determinant of Jacobian should 

be greater than 0, because if determinant of Jacobian is equal to 0, then there is that 

relation that is we cannot calculate derivatives of shape function with respect to the 

physical coordinates, if you know shape function derivatives with respect to the parent 

element coordinates s and t. We took two types of elements four-noded quadrilateral 

element and eight-noded quadrilateral element, and we checked for isoparametric 

mapping validity by plotting determinant of Jacobian as a function of s and t, and also we 

plotted the other way of checking is we can also plot the physical coordinates X Y in 

terms of s and t, and see if it produces the shape of actual element or not. And if one 

plots determinant of J, determinant of J needs to be check whether it is a greater than 0 

over the entire parent element domain. This is how we can check the validity of 

isoparametric mapping. 



After going through four examples, we can make conclusions out of what we studied in 

the last class that is why we will be looking at proper modeling with isoparametric 

element in this lecture. 

(Refer Slide Time: 03:47) 

 

From the above four examples that we looked at in the last class, it is clear that there 

must be some restrictions on placement of mid-side nodes. For one-dimensional 

quadratic elements it is possible to show mathematically that determinant of J will not 

attain 0 if mid-side node is placed in the middle half of the element that is what basically 

we did when we looked at one dimensional quadratic element and what we derived or 

what the result that we got for one dimensional case is reproduced if we have an edge 

which is of length L then the excluding the two extreme nodes extreme end nodes the 

mid-side node the location of it should be between L over 4 and 3 L over 4 where s is 

measured from one of the extreme nodes and L is the total length of that side. This is the 

requirement if determinant of J is should not be equal to 0. 



(Refer Slide Time: 05:23) 

 

Same thing we can extend for two-dimensional case. The placement of mid side node 

should satisfy this condition s should be between L over 4 and 3 L over 4. It is difficult 

to derive such a condition for two-dimensional problems, however if one-dimensional 

condition is followed along each side of element mapping is usually satisfactory. 

There is nothing special with respect to two-dimensional element whatever condition we 

derived for one dimensional element that we need to check for each of the sides of a two-

dimensional element for mapping to be satisfactory. 

(Refer Slide Time: 06:10) 

 



If you recall in yesterday’s lecture we have taken the last example that we have taken is 

an eight-noded element where node two is placed very close to one of the nodes node 

three and there we have seen some problem with determinant of J being not greater than 

zero. So that happened because it violated this condition that the placement of mid-side 

node is not satisfying the condition that it should be between L over 4 and 3 L over 4 for 

that particular example. 

(Refer Slide Time: 06:55) 

 

The mapping problems may also arise when Jacobian matrix is nearly singular due to 

round-off errors or due to badly shaped elements. These are the two reasons why 

Jacobian matrix maybe nearly singular that is almost singular. Round-off errors may be 

controlled by using higher precision during calculations and also changing units in which 

the problem is defined or using some other suitable technique, so this is how round-off 

errors can be controlled. 

What about badly shaped elements?, we have looked at if you recall in the last class we 

have seen a four-noded element which is second example under validity checking of 

isoparametric mapping there we have taken an element intentionally which is very bad 

shaped element and there the mapping turned out to be bad. To avoid problems badly 

shaped elements, it is recommended that the inside angles in quadrilateral element be 

greater than 15 degrees and less than 165 degrees. 



(Refer Slide Time: 08:45) 

 

If we have violations of this inside angles, then you may have mapping problems similar 

to what we observed in the last class. So the two requirements are the mid side node 

should be positioned such a way that it is between L over 4 and 3 L over 4 of a particular 

side and the angle between or the inside angles in a quadrilateral element should be 

greater than 15 and less than 165 degrees. 

(Refer Slide Time: 09:17) 

 

The following example demonstrates disastrous results due to a common input error 

while using finite element analysis computer programs. Sometimes the node numbering 



if we do not follow or if we violate for two dimensional cases either all the nodes should 

be numbered in clockwise direction or anticlockwise direction. Sometimes problem with 

results may arise and if a program expects element connectivity to be defined in a 

counter-clockwise manner and user enters a data as shown in figure below mapping will 

obviously fail. 

The computer program is expecting the node numbering should be given in a particular 

direction that is counter-clockwise manner, but user in input data is not according to that 

requirement then mapping is going to fail to demonstrate that an example is given (Refer 

Slide Time: 09:17) actually it is a four-noded quadrilateral elements, but taking in 

counter-clockwise direction the node numbering should be 1 2 and after that 3 4, but if 

you see the node numbering is 1 2 and 4 and 3, if we take in the counter-clockwise 

direction. The computer program when it reads it takes the nodal connectivity as 1 2, 4 3 

instead of 1 2, 3 4. 

(Refer Slide Time: 11:30) 

 

So, what happens most commercial codes checks for zero Jacobian condition and warn 

users if Jacobian matrix is singular, but this checking business that this commercial 

software is going to do is only at few points few selected points. However, a user must 

still be careful in following program input instructions because zero Jacobian is usually 

performed at few selected points, so what is going to happen, it is possible to have 



nonzero jacobian at those points where commercial software is checking, but overall 

mapping is still be invalid. 

(Refer Slide Time: 12:23) 

 

Now let us look at the example. What happens, if the commercial software or if a 

particular software expects the nodal information be given in a particular direction but if 

user inputs in a different way what is going to happen. Let us take that example nodes 

are numbered 1, 2, 3, 4 instead they should have been numbered as 1, 2, 4, 3 or the nodal 

connectivity should have been 1, 2, 4, 3 instead of 1, 2, 3, 4. So let us see what is going 

to happen and let us note down what are the physical coordinates X 1 to X 4 from the 

information that is given from the problem and y 1 to y 4. After this, this element is we 

are going to map it on to a 4 node parent element taking parent element shape functions 

we can write isoparametric mapping expressions that is X in terms of s and t, y in terms 

of s and t using parent element shape functions and physical element coordinates. 



(Refer Slide Time: 13:45) 

 

Isoparametric mapping, once we do that we get these relations between X and s and t, y 

and s and t using that waiting partial derivatives of X with respect s and t, y with respect 

s and t we can easily calculate determinant of J which is given. Let us check what line 

this determinant of J is going to be 0, equating determinant of J to 0, we get determinant 

of J to be 0 along the line which satisfies the condition s plus 60 is equal to minus 1. As I 

mentioned in the last class, if you plot this line or if you overlie this line that is s plus 60 

is equal to minus 1 on the parent element domain s going from minus 1 to 1, T going 

from minus 1 to 1 if you overlie this line of that it can be clearly seen that this line is 

going to cut across the domain mapping is not good because this line is going to cut 

across the parent element domain. 
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The other way of checking the same thing whether the mapping is valid or not is plotting 

x y as a function of s and t and it can be clearly seen there is a fold which indicates 

mapping is not good. The element plot clearly demonstrates that element is not mapped 

properly. If mapping was good, then we are not going to have this kind of fold and 

whatever the shape that we are going to get exactly looks like the physical or the actual 

element that is started out with. So placement of nodes and the internal angles of a 

quadrilateral these two requirements are very important for isoparametric mapping to be 

good. And whatever we have studied for two dimensional elements can easily be 

extended for three dimensional elements. 

Now let us look at numerical integration for quadrilateral elements because the matrices 

and vectors that we are going to get for quadrilateral elements. The integrant for the 

integrals is not going to be a constant like in three node triangular element, which is 

linear, but they are going to be function of X and y or in turn function of s and t, so when 

we are conforming numerical integration or when we are trying to evaluate this integrals, 

we need to adopt numerical integration because we may not be able to find the closed 

form expressions of these so easily because as integrant becomes complicated. 
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So now let us look at numerical integration for quadrilateral elements. The Gaussian 

integration formulas presented earlier for one dimensional integration can be extended to 

two dimensional integrations over a square. Basically, whatever quadrilateral element or 

rectangular element we have, we are going to map it on to a parent element where s goes 

from minus 1 to 1 and t goes from minus 1 to 1. 

We need to understand how to do Gaussian integration over a square or a parent element 

with s going from minus 1 to 1 t going from minus 1 to 1. So the integration formulas 

presented for one dimensional integration now they will be extended for two dimensional 

integrations over this parent element. These formulas are also called Product-Gauss 

integration formulas. And basically this is how we will be evaluating in two dimensional 

case i is equal to minus 1 integral minus 1 to 1 double integral minus 1 to 1, minus 1 to 1 

f as a function of s and t, dsdt. 

 So let us say suppose that is the function we need to evaluate that is numerically 

approximated as double summation i going from 1 to m, j going from 1 to and, weight in 

the s direction times weight in the t direction that is W i times W j types function 

evaluated at each of these integration points that is i going from 1 to m, j going from 1 to 

n that results in a grid. So at each point of this grid, we need to evaluate this function and 

multiply with corresponding weight which is going to be W i times W J and sum it up we 

are going to get approximate or approximation of the integral i. 



(Refer Slide Time: 17:52) s i and t j are the gauss point locations m number of gauss 

points in the s direction. 

(Refer Slide Time: 20:17) 

 

And n number of Gauss points in the t direction and W i, W j are the gauss weights in s 

and t directions, function s i, t j as the value of integrant at the point s i, t j and total 

number of gauss point there are m number of gauss points in the s direction and n 

number of gauss points in the t directions total number of gauss points is going to be m 

times n. The location of gauss points in each direction and corresponding weights are 

same as those which we already looked, when we are looking at one dimensional 

Gaussian integration. 



(Refer Slide Time: 21:24) 

 

For completeness they are repeated here and before that we will see few commonly used 

integrations for two dimensional case, here 1 by 1 integration is shown that is along s 

direction one point is taken and again along t direction also one point is taken. That 

results in 1 by 1 integration and 2 by 2 integration two gauss points are taken in S the 

direction of s and two gauss points are taken in the direction of t, so it results in total 2 by 

2, which is going to be four integration point similarly 3 by 3 integration where three 

points are taken along s direction and three points in the t direction resulting in total three 

times 39 integration points. The location of these points in each direction and the 

corresponding weights are same as those we have studied for one dimensional case and 

they are reproduced. 



(Refer Slide Time: 22:52) 

 

We have already looked at this earlier expect that the table starts from n is equal to 2 and 

n is equal to 1 integration point is 0 the location of integration point is 0 and weight is 2. 

So here this table give us from n is equal to 2 to n is equal to 10, in this portion of table 

the points and weights for n is equal to 2, 3, 4, 5 are shown. 

(Refer Slide Time: 23:35) 

 

How to read this table, I already explained when we are looking at one dimensional case 

and this portion of the table shows from n is equal to 6 to 8. 



(Refer Slide Time: 23:59) 

 

In this portion of the table shows for 9 number of points and 10 number of gauss points 

as I mentioned for n is equal to 1, x is equal to 0 and weight is equal to 2. 

(Refer Slide Time: 24:15) 

 

Now let us look at, how to evaluate or how to get the coordinates for 1 by 1 integration. 

In s direction, the location is at s is equal to 0 in the t direction location is at t is equal to 

0. The location of gauss point is going to be 0, 0 because in the s direction it is 0 and in 

the t direction it is 0 and the weight in the S direction is 2 and weight in the t direction is 

2, so total weight is going to be two times to four, so this is for 1 by 1 integration. 



(Refer Slide Time: 25:02) 

 

Next is 2 by 2 integration. There are two integration points in s direction and two 

integration points in the t direction. The coordinates of integration points in the s 

direction can be obtained from the table that we just looked at taking number of 

significant digits as the accuracy that one is looking for. So here the integration point 

coordinates in the s direction are shown and also weight in the s direction at these two 

points is equal to 1 similarly, integration point coordinates in the t direction are given 

and weight in the t direction is at the two points is equal to 1, so by combination of this 

that is s is equal to plus or minus 0.5773502692 and t is equal to plus or minus 

0.5773502692 by combination of these we can obtain the coordinates of all integration 

points and again each integration point weight is going to be weight in the s direction 

times weight in the t direction, so that is how we can get weights and coordinates of all 

the four integrations points. 
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Similarly, 3 by 3 integration from the table read out the coordinates of the integration 

points in the s direction and the corresponding weights similarly, same thing or you can 

repeat for the t direction. If there are three points in the t direction as well same the 

coordinates of the integration points in s direction will be same as in the t direction. If 

one has different number of integration points in the t direction then we need to read out 

the corresponding coordinates and weights from the table that is given earlier and doing 

or calculating the weights as I explained weight in the s direction times weight in the t 

direction, we get weights at all the points and also by combining these coordinates in s 

direction and t direction, we can get the coordinates of all points for this two-dimensional 

integration, so similar procedure can be extended for any order of integration. 
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So let us take an example evaluate i is equal to double integral minus 1 to 1, minus 1 to 1 

eight times s power 7 plus 7 times t power 6 dsdt using Gaussian quadrature. Let us start 

with 1 by 1 integration. So in the s direction the coordinate as s is equal to 0 in the t 

direction coordinate is t is equal to 0 that is the location of integration point and weight is 

weight in the s direction times weight in the t direction which is weight in the s direction 

is 2 weight in the t direction is 2 so total weight is 4, but the function value evaluated at s 

is equal to 0, t is equal to at 0 that is integrant value evaluated at s is equal to 0 and t is 

equal to 0, it turns out to be 0, so total integral is going to be 0 because the function value 

is 0 and whatever weight that is even if you multiply with 4, we are going to get 0. In 2 

by 2 integration, this is integrant and we need to evaluate this integrant at the four 

integration points where s and t values can be obtained from the table. Following the 

procedure that I explained, we need to evaluate this function value at this four integration 

points and multiply with corresponding weights and sum them up to get the approximate 

value of integrals. 



(Refer Slide Time: 29:50) 

 

We can do all these calculations in a table format. The calculations are summarized in 

the following table. First column shows point, second column shows what is the s 

coordinate of this particular point, and third column t coordinate of that particular point 

and the forth column shows the integrant value that is f value evaluated at that particular 

point substituting s and t values and fifth column shows weight in the s direction, sixth 

column shows weight in the t direction and seventh column shows weight in the s 

direction times weight in the t direction times the function value at that particular point, 

so summing up all the contribution from all the four points that is summing up the values 

which are in the seventh column we are going to get the value of integral, so this is using 

2 by 2 integration two points in the s direction and two points in the t direction. 



(Refer Slide Time: 31:19) 

 

Similar procedure can be extended if one wants to use higher order integration that is 3 

by 3 integration integrant or function and calculations are summarized in the table. 

(Refer Slide Time: 31:34) 

 

So 3 by 3 results in nine integration points total function value needs to be evaluate at all 

the nine integration points multiplied with weight in the s direction times and weight in 

the t direction. The contribution from all the nine integration points can be summed up to 

get the approximate value of integral and the approximate value of integral is using 3 by 

3 integration is 3.36. and whereas this integral that is double integral minus 1 to 1, minus 



1 to 1 eight times s power 7 plus seven times t power 6, dsdt we can also perform exact 

integration because this integrant is very simple s power 7 integral s power 7, d s is s 

power 8 divided by 8. Similarly integral t power 6, d t is t power 7 divided by 7, we can 

easily evaluate this integral value exactly and substitute the limits of the integration and 

if you do that exact integral can be evaluated or can be easily verified to be equal to 4. 

If you see this integral in the s direction, we have highest power as 7 and in the t 

direction highest power as 6 and as we can apply the formula that we looked at when we 

are discussing one dimensional integral that is n point Gaussian integration can integrate 

a function of order 2 n minus 1 exactly. 

We can use that thumb rule and we can easily back calculate how many points we can 

use in s direction and how many points we can use in the t direction. So two n minus 1 is 

equal to 7 results in n is equal to 4 and 2 n minus 1 is equal to 6 results in n is equal to 

3.5 which needs to be rounded up to 4. So if one wants to evaluate this integral exactly, 4 

by 4 integration needs to be adopted. If one adopts 4 by 4 integration, then the 

approximate value of integral that we get by doing Gaussian quadrature matches exactly 

with exact value of the integral which is 4. 

(Refer Slide Time: 35:45) 

 

Now let us take another example. Use 2 by 2 integration formula that is total six points to 

evaluate following integral i double integral minus 1 to 1, minus 1 to 1, s square s t times 

t power four dsdt, so the function is this as you can see the highest power of s is 2 and 



the highest power of t is 5 applying the 2 n minus 1 rule that we have for deciding how 

many points we need to use in s direction and how many points we need to use in the t 

direction 2 n minus 1 is equal to 2 results in n is equal to 1.5, which can be rounded off 

to 2 and 2 n minus 1 is equal to 5 results in n is equal to 3, so we need to adopt two 

integration points in s direction and three integration points in the t direction to evaluate 

this integral exactly that is what is ask to use that is 2 by 2 integration formula. The 

approximate solution that we are going to get by adopting Gaussian integration is going 

to match with the exact results for this particular problem when we adopt 2 by 2 

integration. All the calculations these are the locations of integration points. The details 

of calculations at each of this integration points and their locations and weights are given 

in the table. 
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Total six integration points, first column shows the point integration point number, 

second column shows location in s direction, third column location in the t direction, 

fourth column function value at that particular location substituting that particular 

corresponding s and t values and fifth column shows weight in the s directions, sixth 

column weight in the t direction and seventh column shows weight in the s direction 

times weight in the t direction times function value evaluated at that particular point. And 

summing up all the values in the seventh column we get the approximate value of this 

integral. You can see the approximate value that is obtain using Gaussian quadrature 

matches very well with the exact solution for this particular problem.  



So far, we have seen as a part of this isoparametric quadrilateral element, we have seen 

how to derive shape functions for four to 9 node quadrilateral elements and also we 

looked at isoparametric mapping concept for two dimensional elements and also we 

looked at numerical integration for evaluate the integrals over two dimensional domains. 

Now, we are ready to develop element equations by taking one, any one of the 

quadrilateral elements, so now let us look go and take the simplest elements that we can 

have under quadrilateral element category that is 4 node quadrilateral element. 
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The 4 node quadrilateral element for two dimensional boundary value problems; using 

isoparametric mapping and the procedure used for triangular element it is straight 

forward to develop finite element equations for any element. Equations for 4 node 

quadrilateral element for general two dimensional boundary value problem. we are going 

to develop the equations for 4 node quadrilateral element for general two dimensional 

boundary value problem. Let us go back and recall what is the differential equation that 

we are using for general two dimensional boundary value problem, the differential 

equation is something like this which (Refer Slide Time: 38:48) we used when we are 

developing element equations using three 3 triangular element. 

Now using Galerkin criteria for the problem gives us this equation basically Galerkin 

criteria is multiply given differential equation with the weight function. When we are 

using finite element method shape function is same as weight functions so integrate the 



given differential equation with shape function and how many shape functions, it 

depends on what kind of element, one is adopting. So multiply given differential 

equation with shape function integrate over the problem domain equated to 0 and this is a 

first step and is equation needs to be further simplified for that we use Green’s theorem. 
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And when we are looking 3 node linear triangular elements already gave you this 

formulas integration by parts in two dimensions double integral U times partial 

derivative of V with respect to x d A is equal to minus double integral over area V times 

partial derivative of U with respect x plus line integral U times V x component of 

outward normal integrated over the boundary similarly the second equation. These are 

the two equations that we get using Green’s theorem and we will be using these two 

formulas to simplify the previous equation further x and y are the direction cosines of 

boundary normal. 
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So using these two formulas and simplifying the previous equation. The first two terms 

of the previous equation can be simplified using Green’s theorem formula that we just 

looked at and that result in this. If you recall we discussed in detail all these when we are 

dealing with 3 node triangular element except that the only difference that you have 

between that and here (Refer Slide Time: 42:02) number of shape functions are four 

whereas earlier number of shape functions are three and the shape function expressions 

also are different for four node and three node element, except that this part is similar as 

pointed out earlier boundary integral needs to be evaluated over only the part of 

boundary on which natural boundary condition is specified. 

If you see the second part of the equation, integral needs to be perform only on s 2, s 2 is 

the part of boundary on which natural boundary condition is specified because the part of 

the boundary and which essential boundary condition is specified, we do not need to 

evaluate this integral because it goes as a reaction term in the final equation system that 

we get, so we ignored this explanation I have given you when we are looking at 3 node 

linear triangular element. 

So let me now we are looking at the second integral, the integrant comes the value of it 

can be further simplified which comes from the prescribed natural boundary condition. 

From the natural boundary condition, the line integral that is the boundary integral over s 

2 can be further simplified or further rewritten using this boundary condition that is a k x 



times partial derivative of t with respect times x times. x component of normal plus k y 

times partial derivative of t with respect to y times .y component of normal is equal to 

(minus) alpha t plus beta. 

(Refer Slide Time: 44:30) 

 

Substituting this quantity into this equation, it can be written and now we need to make 

substitution of shape function expressions. There are four shape functions for 4 node 

quadrilateral element. 

(Refer Slide Time: 44:53) 

 



The shape functions need to be in the parent coordinates even though or will be mapping 

actual element and parent element. Actual Element is shown instead of performing 

calculations on the actual element we are going to perform calculations on the parent 

element and that is what isoparametric mapping is. 

(Refer Slide Time: 45:20) 

 

The shape functions for 4 node Parent Element in terms of s and t can we put in a vector 

and we can take the derivatives of shape functions with respect s and t. 

(Refer Slide Time: 45:48) 

 

Derivatives of shape functions with respect s and t. 
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Derivatives of shape functions with respect s and t and vectors of nodal coordinates 

looking at the actual element. We can write the nodal coordinates here there is a mistake 

the vector of nodal coordinates consists of only x 1, x 2, x 3, and x 4 similarly, vector of 

nodal coordinates for Y consists of only y 1, y 2, y 3, and y 4, X Y and y 5 should not 

appear because of we have only five nodes. 
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So, using the nodal coordinates x 1, x 2, x 3, x 4, and y 1, y 2, y 3, and y 4, we can write 

isoparametric mapping relations, which can be compactly written in a matrix and vector 



form, N transpose comprises of all the shape functions n 1 to n 4 and X N comprises of 

all the X coordinates of all the nodes x 1 to x 4 and once we have this relation, we can 

easily take partial derivative of that X with respect to s and with respect to T. Similarly, 

Y is equal to N transpose Y N again N transpose is vector of shape functions and Y N is 

vector of Y coordinate of all the nodes y 1 to y 4, y 1, y 2, y 3, and y 4, once we have 

that relation we can easily take derivatives of y with respect s and t. 

Once we have this partial derivative of X with respect to s, partial derivative of X with 

respect to t, partial derivative of Y with respect s, and partial derivative of Y with respect 

to t, we can easily calculate what is determinant of Jacobian and derivatives with respect 

to X and Y can be computed. 
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Once we know the determinant of Jacobian we can compute the derivatives of shape 

function with respect X and Y. Once we know derivatives of shape function with respect 

s and t, because if you see on the right hand side, we have partial derivative of shape 

functions with respect s and t and that vector can easily be computed, because shape 

functions are in terms of parent coordinates s and t . And thus the x y derivatives of 

entire shape function vector can be written writing shape function derivatives with 

respect to x as a separate vector B x, we can write from the previous equation, we can 

write this relation similarly B y. 
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And using the parent element shape functions trial solution and it is derivative. Trial 

solution can be written like as N 1, T 1 plus N 2, T 2, plus N 2, T 3, plus N 4, T 4 in a 

matrix and vector form as N transpose d similarly, derivatives of t with respect to X can 

be written as B x transpose d, derivatives of T with respect to Y can be written as B y 

transpose d. 
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So, we have the trial solution and also derivatives in terms of finite element shape 

functions. Now we can substitute all this information into the equation. 



(Refer Slide Time: 50:34) 

 

In this equation, thus substituting the trial solution into the Galerkin criteria and writing 

all four equations together in matrix form we get. There are four equations because there 

are four shape functions. Substituting the derivatives of trial solution and trial solution in 

terms of finite element shape functions and derivatives of shape function we get this 

equation. 
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And complete element equations can be written in standard form by defining following 

matrices. The previous equation can be rewritten in this manner K x, K y, K p, K alpha, 



K x plus K y plus K p plus K alpha times D is equal to R q plus R beta, which can be 

compactly written as K D equal to R. Each of this matrices and vectors are defined like 

this. This is obtained from the previous equation by comparing with previous equation 

we can write this; and the integrals involved you can easily notice that integrals involved 

in element equations are quite complicated and usually require numerical integrations. 

So that is the reason we looked at Gaussian integration in two-dimensional case. In the 

next class, we will be looking at the details how to evaluate all these area integrals and 

line integrals. 


