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In the last class, we have seen the concept of isoparametric mapping, using which we can
express the physical coordinates X Y in terms of parent element coordinates as s and t
using shape functions of parent element and the spatial coordinates of the physical
element. Basically isoparametric mapping is a relation, which relates physical
coordinates of elements with the coordinates of parent element. After that we looked at
how to calculate derivatives of shape functions with respect to the physical coordinates X
Y, if the shape function of derivatives with respect to the parent element coordinates s
and t are known; for that we require what is called Jacobian. So Jacobian matrix is the
one which relates the derivative of shape functions in the physical element coordinates X
Y with parent element coordinates s and t. To get the inverse relation that is if we know
the derivatives of shape functions with respect to the parent element, how to get the
shape function derivatives with respect to the physical coordinates X Y, we require

determinant of Jacobian.

And in the last class, we have seen for a valid mapping, determinant of Jacobian should
be greater than 0, because if determinant of Jacobian is equal to 0, then there is that
relation that is we cannot calculate derivatives of shape function with respect to the
physical coordinates, if you know shape function derivatives with respect to the parent
element coordinates s and t. We took two types of elements four-noded quadrilateral
element and eight-noded quadrilateral element, and we checked for isoparametric
mapping validity by plotting determinant of Jacobian as a function of s and t, and also we
plotted the other way of checking is we can also plot the physical coordinates X Y in
terms of s and t, and see if it produces the shape of actual element or not. And if one
plots determinant of J, determinant of J needs to be check whether it is a greater than 0
over the entire parent element domain. This is how we can check the validity of
isoparametric mapping.



After going through four examples, we can make conclusions out of what we studied in
the last class that is why we will be looking at proper modeling with isoparametric
element in this lecture.
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PROPER MODELING WITH ISOPARAMETRIC ELEMENT

O From the above examples it is clear that there must be
some restrictions on the placement of mid - side nodes.

O For one dimensional quadratic elements it is possible to
show mathematically that det J will not attain zero value if
the mid — side node is placed in the middle half of the

element.

From the above four examples that we looked at in the last class, it is clear that there
must be some restrictions on placement of mid-side nodes. For one-dimensional
quadratic elements it is possible to show mathematically that determinant of J will not
attain 0 if mid-side node is placed in the middle half of the element that is what basically
we did when we looked at one dimensional quadratic element and what we derived or
what the result that we got for one dimensional case is reproduced if we have an edge
which is of length L then the excluding the two extreme nodes extreme end nodes the
mid-side node the location of it should be between L over 4 and 3 L over 4 where s is
measured from one of the extreme nodes and L is the total length of that side. This is the

requirement if determinant of J is should not be equal to 0.
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PROPER MODELING (Continued)

O That is for the mid side node L/4 <s < 3L/4.

Qa It is difficult to derive such a condition for two
_dimensional problems, however, if the one dimensional
‘ﬁgndition is followed along each side of the element, the
apping is usually satisfactory.

Same thing we can extend for two-dimensional case. The placement of mid side node
should satisfy this condition s should be between L over 4 and 3 L over 4. It is difficult
to derive such a condition for two-dimensional problems, however if one-dimensional

condition is followed along each side of element mapping is usually satisfactory.

There is nothing special with respect to two-dimensional element whatever condition we
derived for one dimensional element that we need to check for each of the sides of a two-

dimensional element for mapping to be satisfactory.
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PROPER MODELING (Continued)

3 That is for the mid side node L/4 < s < 3L/4.

QO It is difficult to derive such a condition for two
_dimensional problems, however, if the one dimensional
{’.%‘@ndition is followed along each side of the element, the

‘;.-_ﬁ‘happing is usually satisfactory.




If you recall in yesterday’s lecture we have taken the last example that we have taken is
an eight-noded element where node two is placed very close to one of the nodes node
three and there we have seen some problem with determinant of J being not greater than
zero. So that happened because it violated this condition that the placement of mid-side
node is not satisfying the condition that it should be between L over 4 and 3 L over 4 for

that particular example.
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PROPER MODELING (Continued)

O The mapping problems may also arise when the
Jacobian matrix is nearly singular either due to round - off
errors or due to badly shaped elements.

O Round - off errors may be controlled by using higher
precision during calculations, changing units in which the

problems is defined, or by using some other suitable
technique.

The mapping problems may also arise when Jacobian matrix is nearly singular due to
round-off errors or due to badly shaped elements. These are the two reasons why
Jacobian matrix maybe nearly singular that is almost singular. Round-off errors may be
controlled by using higher precision during calculations and also changing units in which
the problem is defined or using some other suitable technique, so this is how round-off

errors can be controlled.

What about badly shaped elements?, we have looked at if you recall in the last class we
have seen a four-noded element which is second example under validity checking of
isoparametric mapping there we have taken an element intentionally which is very bad
shaped element and there the mapping turned out to be bad. To avoid problems badly
shaped elements, it is recommended that the inside angles in quadrilateral element be

greater than 15 degrees and less than 165 degrees.
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PROPER MODELING (Continued)

0 To avoid problems due to badly shaped elements it is
recommended that the inside angles in quadrilateral
elements be > 15° and < 165°.

y
> 150

< 1659

If we have violations of this inside angles, then you may have mapping problems similar
to what we observed in the last class. So the two requirements are the mid side node
should be positioned such a way that it is between L over 4 and 3 L over 4 of a particular
side and the angle between or the inside angles in a quadrilateral element should be

greater than 15 and less than 165 degrees.
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PROPER MODELING (Continued)

O The following example demonstrates disastrous results
due to a common input error while using finite element
analysis computer programs.

O If a program expects element connectivity to be defined
in a counter — clockwise manner and a user enters data as
shown in figure below, the mapping will obviously fail.

y
4(3,3)

3(0,2)

X

1(0,0)  2(2,0)

The following example demonstrates disastrous results due to a common input error

while using finite element analysis computer programs. Sometimes the node numbering



if we do not follow or if we violate for two dimensional cases either all the nodes should
be numbered in clockwise direction or anticlockwise direction. Sometimes problem with
results may arise and if a program expects element connectivity to be defined in a
counter-clockwise manner and user enters a data as shown in figure below mapping will

obviously fail.

The computer program is expecting the node numbering should be given in a particular
direction that is counter-clockwise manner, but user in input data is not according to that
requirement then mapping is going to fail to demonstrate that an example is given (Refer
Slide Time: 09:17) actually it is a four-noded quadrilateral elements, but taking in
counter-clockwise direction the node numbering should be 1 2 and after that 3 4, but if
you see the node numbering is 1 2 and 4 and 3, if we take in the counter-clockwise
direction. The computer program when it reads it takes the nodal connectivity as 1 2, 4 3
instead of 1 2, 3 4.
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PROPER MODELING (Continued)

O Most commercial codes check for the zero Jacobian
condition and warn users if the Jacobian matrix is singular.

O However a user must still be careful in following program
input instructions because zero Jacobian check is usually
performed at few selected points.

O Itis possible to have a nonzero Jacobian at these points
but the overall mapping may still be invalid

So, what happens most commercial codes checks for zero Jacobian condition and warn
users if Jacobian matrix is singular, but this checking business that this commercial
software is going to do is only at few points few selected points. However, a user must
still be careful in following program input instructions because zero Jacobian is usually

performed at few selected points, so what is going to happen, it is possible to have



nonzero jacobian at those points where commercial software is checking, but overall

mapping is still be invalid.
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Example

Check the validity of isoparametric mapping for the 4
node quadrilateral element shown in figure below

y
4(3,3)

¢ X

1(0,0) 2(2,0)

;‘_'_'f-,—;@‘;-\%=0.x:=2.x3=0.x4=3 ¥1=0,¥,=0,y;=2,y,=3

MPTEI

Now let us look at the example. What happens, if the commercial software or if a
particular software expects the nodal information be given in a particular direction but if
user inputs in a different way what is going to happen. Let us take that example nodes
are numbered 1, 2, 3, 4 instead they should have been numbered as 1, 2, 4, 3 or the nodal
connectivity should have been 1, 2, 4, 3 instead of 1, 2, 3, 4. So let us see what is going
to happen and let us note down what are the physical coordinates X 1 to X 4 from the
information that is given from the problem and y 1 to y 4. After this, this element is we
are going to map it on to a 4 node parent element taking parent element shape functions
we can write isoparametric mapping expressions that is X in terms of s and t, y in terms

of s and t using parent element shape functions and physical element coordinates.
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Example (Continued)

|soparametric mapping:

x=(5-s+t-5st)/ 4 y = (-5+s)(1+t) / 4

det J=-1/4-s/4 -3t/ 2

Note thatdet J=0at-1/4-s/4-3t/2=00r s +6t =-1

Isoparametric mapping, once we do that we get these relations between X and s and t, y
and s and t using that waiting partial derivatives of X with respect s and t, y with respect
s and t we can easily calculate determinant of J which is given. Let us check what line
this determinant of J is going to be 0, equating determinant of J to 0, we get determinant
of J to be 0 along the line which satisfies the condition s plus 60 is equal to minus 1. As |
mentioned in the last class, if you plot this line or if you overlie this line that is s plus 60
is equal to minus 1 on the parent element domain s going from minus 1 to 1, T going
from minus 1 to 1 if you overlie this line of that it can be clearly seen that this line is
going to cut across the domain mapping is not good because this line is going to cut

across the parent element domain.
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Example (Continued)

0 1 2 3

;’?fj‘@e element plot clearly demonstrates that the element is
,A%t mapped properly.

The other way of checking the same thing whether the mapping is valid or not is plotting
x y as a function of s and t and it can be clearly seen there is a fold which indicates
mapping is not good. The element plot clearly demonstrates that element is not mapped
properly. If mapping was good, then we are not going to have this kind of fold and
whatever the shape that we are going to get exactly looks like the physical or the actual
element that is started out with. So placement of nodes and the internal angles of a
quadrilateral these two requirements are very important for isoparametric mapping to be
good. And whatever we have studied for two dimensional elements can easily be

extended for three dimensional elements.

Now let us look at numerical integration for quadrilateral elements because the matrices
and vectors that we are going to get for quadrilateral elements. The integrant for the
integrals is not going to be a constant like in three node triangular element, which is
linear, but they are going to be function of X and y or in turn function of s and t, so when
we are conforming numerical integration or when we are trying to evaluate this integrals,
we need to adopt numerical integration because we may not be able to find the closed

form expressions of these so easily because as integrant becomes complicated.
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NUMERICAL INTEGRATION FOR QUADRILATERAL
ELEMENTS

O The Gaussian integration formulas presented earlier for
one dimensional integration can be extended to two
dimensional integration over a square (parent element).

U These formulas are called Product — Gauss integration
formulas.

1= j jf(s,t)dsdt ~ iiwiwlf(sﬂt])

11 =1 =

~ s;and t; = Gauss point locations
*Er m = number of Gauss points in the s direction and

=

So now let us look at numerical integration for quadrilateral elements. The Gaussian
integration formulas presented earlier for one dimensional integration can be extended to
two dimensional integrations over a square. Basically, whatever quadrilateral element or
rectangular element we have, we are going to map it on to a parent element where s goes

from minus 1 to 1 and t goes from minus 1 to 1.

We need to understand how to do Gaussian integration over a square or a parent element
with s going from minus 1 to 1 t going from minus 1 to 1. So the integration formulas
presented for one dimensional integration now they will be extended for two dimensional
integrations over this parent element. These formulas are also called Product-Gauss
integration formulas. And basically this is how we will be evaluating in two dimensional
case i is equal to minus 1 integral minus 1 to 1 double integral minus 1 to 1, minus 1 to 1

f as a function of s and t, dsdt.

So let us say suppose that is the function we need to evaluate that is numerically
approximated as double summation i going from 1 to m, j going from 1 to and, weight in
the s direction times weight in the t direction that is W i times W j types function
evaluated at each of these integration points that is i going from 1 to m, j going from 1 to
n that results in a grid. So at each point of this grid, we need to evaluate this function and
multiply with corresponding weight which is going to be W i times W J and sum it up we

are going to get approximate or approximation of the integral i.



(Refer Slide Time: 17:52) s i and t j are the gauss point locations m number of gauss

points in the s direction.
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NUMERICAL INTEGRATION (Continued)

n = number of Gauss points in the t direction

w, and w, = Gauss weights in s and t directions

f(s;.t;) = value of the integrand at the point (s t)

The total number of gauss points =m x n

And n number of Gauss points in the t direction and W i, W j are the gauss weights in s
and t directions, function s i, t j as the value of integrant at the point s i, t j and total
number of gauss point there are m number of gauss points in the s direction and n
number of gauss points in the t directions total number of gauss points is going to be m
times n. The location of gauss points in each direction and corresponding weights are
same as those which we already looked, when we are looking at one dimensional

Gaussian integration.
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NUMERICAL INTEGRATION (Continued)

O Figure below shows few commonly used integration

formulas.
1 x 1 integration

t

2 x 2 integration

t

3 x 3 integration

t

X3

X2

DX

4

X4

X1

Tikh <

X
8

-4 The locations of Gauss points in each direction and
{scprresponding weights are same as those given in table
for one dimensional problems.

For completeness they are repeated here and before that we will see few commonly used
integrations for two dimensional case, here 1 by 1 integration is shown that is along s
direction one point is taken and again along t direction also one point is taken. That
results in 1 by 1 integration and 2 by 2 integration two gauss points are taken in S the
direction of s and two gauss points are taken in the direction of t, so it results in total 2 by
2, which is going to be four integration point similarly 3 by 3 integration where three
points are taken along s direction and three points in the t direction resulting in total three
times 39 integration points. The location of these points in each direction and the

corresponding weights are same as those we have studied for one dimensional case and

they are reproduced.
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Gauss Quadrature

057735

n=2
02691

Gauss Points (£ x)

89626

Weights (w,)

1.00000

00000

0.00000
0.77459

0.33998
0.86113

n=3
00000
66692
n=4
10435
63115

00000
41483

84856
94053

0.88888
| 0.55555

0.65214
0.34785

88888
556555

51548
48451

0.00000
0.53846
0.90617

n=5

00000
93101
98459

00000
05683
38664

0.56888
0.47862
0.23692

88888
86704
68850

We have already looked at this earlier expect that the table starts from n is equal to 2 and
n is equal to 1 integration point is O the location of integration point is 0 and weight is 2.
So here this table give us from n is equal to 2 to n is equal to 10, in this portion of table

the points and weights for n is equal to 2, 3, 4, 5 are shown.
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Gauss Points (+ x)

Weights (w,)

0.23861
0.66120
0.93246

0.00000
0.40584
0.74153
0.94910

0.18343
0.52553
0.79666
0.96028

n=6
91860
93864
95142
n=7
00000
51513
11855
79123
n=8
46424
24099
64774
98564

83197
66265
03152

00000
77397
99394
42759

95650
16329
13627
97536

0.46791
0.36076

017132

0.41795
0.38183
0.27970

| 0.12948

0.36268
0.31370
0.22238
0.10122

39345
15730
44923

91836
00505
53914
49661

37833
66458
10344
85362

72691
48139
79170

73469
05119
89277
68870

78362
77887
53374
90376

How to read this table, I already explained when we are looking at one dimensional case
and this portion of the table shows from n is equal to 6 to 8.
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Gauss Points (+ x;) Weights (w)
n=9
0.00000 00000 00000 | 0.33023 93550
0.32425 34234 03809 | 0.31234 70770
0.61337 14327 00590 | 0.26061 06964
0.83603 11073 26636 | 0.18064 81606
096816 02395 07626 | 0.08127 43883
n=10
0.14887 43389 81631 | 0.29552 42247
0.43339 53941 29247 | 0.26926 67193
0.67940 95682 99024 | 0.21908 63625
0.86506 33666 88985 | 0.14945 13491
0.97390 65285 17172 | 0.06667 13443

In this portion of the table shows for 9 number of points and 10 number of gauss points
as | mentioned for n is equal to 1, x is equal to 0 and weight is equal to 2.
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NUMERICAL INTEGRATION (Continued)

1 x 1 integration

t

Now let us look at, how to evaluate or how to get the coordinates for 1 by 1 integration.
In s direction, the location is at s is equal to O in the t direction location is at t is equal to
0. The location of gauss point is going to be 0, 0 because in the s direction it is 0 and in
the t direction it is 0 and the weight in the S direction is 2 and weight in the t direction is

2, so total weight is going to be two times to four, so this is for 1 by 1 integration.
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NUMERICAL INTEGRATION (Continued)

2 x 2 integration

¢ s = + 0.5773502692

X3 X2 w =1
tj =+ 0.5773502692

X4 X1 W!:‘I

Next is 2 by 2 integration. There are two integration points in s direction and two
integration points in the t direction. The coordinates of integration points in the s
direction can be obtained from the table that we just looked at taking number of
significant digits as the accuracy that one is looking for. So here the integration point
coordinates in the s direction are shown and also weight in the s direction at these two
points is equal to 1 similarly, integration point coordinates in the t direction are given
and weight in the t direction is at the two points is equal to 1, so by combination of this
that is s is equal to plus or minus 0.5773502692 and t is equal to plus or minus
0.5773502692 by combination of these we can obtain the coordinates of all integration
points and again each integration point weight is going to be weight in the s direction
times weight in the t direction, so that is how we can get weights and coordinates of all

the four integrations points.
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NUMERICAL INTEGRATION (Continued)

3 x 3 integration

t

: s, =+ 0.7745966692 w, = 5/9
Sx =0 w =8/9

t = +0.7745966692 w, = 5/9
t=0 w =89

Similarly, 3 by 3 integration from the table read out the coordinates of the integration
points in the s direction and the corresponding weights similarly, same thing or you can
repeat for the t direction. If there are three points in the t direction as well same the
coordinates of the integration points in s direction will be same as in the t direction. If
one has different number of integration points in the t direction then we need to read out
the corresponding coordinates and weights from the table that is given earlier and doing
or calculating the weights as | explained weight in the s direction times weight in the t
direction, we get weights at all the points and also by combining these coordinates in s
direction and t direction, we can get the coordinates of all points for this two-dimensional
integration, so similar procedure can be extended for any order of integration.
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Example

11
Evaluate I=f _[(857 +7l6)dsdt using Gauss quadrature.
11

(i) Using 1 x 1 formula:
f(0,0)=0 =0
(i) Using 2 x 2 formula

f(s,t) = 8s7 + 716

{ u!a}

So let us take an example evaluate i is equal to double integral minus 1 to 1, minus 1 to 1
eight times s power 7 plus 7 times t power 6 dsdt using Gaussian quadrature. Let us start
with 1 by 1 integration. So in the s direction the coordinate as s is equal to O in the t
direction coordinate is t is equal to 0 that is the location of integration point and weight is
weight in the s direction times weight in the t direction which is weight in the s direction
is 2 weight in the t direction is 2 so total weight is 4, but the function value evaluated at s
is equal to O, t is equal to at O that is integrant value evaluated at s is equal to O and t is
equal to 0, it turns out to be 0, so total integral is going to be 0 because the function value
is 0 and whatever weight that is even if you multiply with 4, we are going to get 0. In 2
by 2 integration, this is integrant and we need to evaluate this integrant at the four
integration points where s and t values can be obtained from the table. Following the
procedure that I explained, we need to evaluate this function value at this four integration
points and multiply with corresponding weights and sum them up to get the approximate

value of integrals.
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Example (Continued)

The calculations are summarized in the following table

Point 5 t fisit) | w | w [ wwf(s,t)

0.57735 |-0.57735| 0.43032 | 1 | 1 | 0.43032

057735 | 057735 | 043032 | 1 | 1 | 043032
| 057735 | 057735 | 0088192 | 1 | 1 | 0.088192
057735 | 057735 | 0088192 | 1 | 1 | 0.088192
| Sum | 1.03703

We can do all these calculations in a table format. The calculations are summarized in
the following table. First column shows point, second column shows what is the s
coordinate of this particular point, and third column t coordinate of that particular point
and the forth column shows the integrant value that is f value evaluated at that particular
point substituting s and t values and fifth column shows weight in the s direction, sixth
column shows weight in the t direction and seventh column shows weight in the s
direction times weight in the t direction times the function value at that particular point,
so summing up all the contribution from all the four points that is summing up the values
which are in the seventh column we are going to get the value of integral, so this is using
2 by 2 integration two points in the s direction and two points in the t direction.
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Example (Continued)

(i) Using 3 x 3 formula

f(s, t) = 8s7 + 716

The calculations are summarized in the following table

Similar procedure can be extended if one wants to use higher order integration that is 3

by 3 integration integrant or function and calculations are summarized in the table.
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Point S t w; w f(si.t)
1 | 774597 | -774597 0.87979
2 | 774597 o | ' ' 0.66099

| 3 | 774507 | 774597 | ' | 087979

0 774597 0.746669

[~ 774507 | 774507 | ' | 0.053548

774597 | 0 | | 819 | -0.660991
- 774507 | - 774597 | _ 0.0535484

0 | -.774597 | | 5/9 | 0.7466686
0 0 | | o

nd is equal to 4.

So 3 by 3 results in nine integration points total function value needs to be evaluate at all
the nine integration points multiplied with weight in the s direction times and weight in
the t direction. The contribution from all the nine integration points can be summed up to
get the approximate value of integral and the approximate value of integral is using 3 by

3 integration is 3.36. and whereas this integral that is double integral minus 1 to 1, minus



1 to 1 eight times s power 7 plus seven times t power 6, dsdt we can also perform exact
integration because this integrant is very simple s power 7 integral s power 7, d s is s
power 8 divided by 8. Similarly integral t power 6, d t is t power 7 divided by 7, we can
easily evaluate this integral value exactly and substitute the limits of the integration and

if you do that exact integral can be evaluated or can be easily verified to be equal to 4.

If you see this integral in the s direction, we have highest power as 7 and in the t
direction highest power as 6 and as we can apply the formula that we looked at when we
are discussing one dimensional integral that is n point Gaussian integration can integrate

a function of order 2 n minus 1 exactly.

We can use that thumb rule and we can easily back calculate how many points we can
use in s direction and how many points we can use in the t direction. So two n minus 1 is
equal to 7 results in n is equal to 4 and 2 n minus 1 is equal to 6 results in n is equal to
3.5 which needs to be rounded up to 4. So if one wants to evaluate this integral exactly, 4
by 4 integration needs to be adopted. If one adopts 4 by 4 integration, then the
approximate value of integral that we get by doing Gaussian quadrature matches exactly

with exact value of the integral which is 4.
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Example

Use 2 x 3 integration formula (6 points) to evaluate the
following integral

11

I= I I (s? +st)t'dsdt

-1

f(s.t)= (52 +st)l‘

7., Ihe calculations are summarized in the following table

Now let us take another example. Use 2 by 2 integration formula that is total six points to
evaluate following integral i double integral minus 1 to 1, minus 1 to 1, s square s t times

t power four dsdt, so the function is this as you can see the highest power of s is 2 and



the highest power of t is 5 applying the 2 n minus 1 rule that we have for deciding how
many points we need to use in s direction and how many points we need to use in the t
direction 2 n minus 1 is equal to 2 results in n is equal to 1.5, which can be rounded off
to 2 and 2 n minus 1 is equal to 5 results in n is equal to 3, so we need to adopt two
integration points in s direction and three integration points in the t direction to evaluate
this integral exactly that is what is ask to use that is 2 by 2 integration formula. The
approximate solution that we are going to get by adopting Gaussian integration is going
to match with the exact results for this particular problem when we adopt 2 by 2
integration. All the calculations these are the locations of integration points. The details
of calculations at each of this integration points and their locations and weights are given
in the table.
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S t ; W | wwf(st)

| 57735 | - 774897 | - 59 -02278
57735 | 0 : 89 0

| 57735 | 774507 | 1 || 0418611

57735 | 774807 | - '5/9| -02278

|.s7735] o | o e 0

57735 | -774597 | 281 | 1 |5/ | .1561

| | Sum| 0.26666

o
i)
sl

A Bus | = 0.26666 Exact | = 4/15 = 0.26667
HPTE!

Total six integration points, first column shows the point integration point number,
second column shows location in s direction, third column location in the t direction,
fourth column function value at that particular location substituting that particular
corresponding s and t values and fifth column shows weight in the s directions, sixth
column weight in the t direction and seventh column shows weight in the s direction
times weight in the t direction times function value evaluated at that particular point. And
summing up all the values in the seventh column we get the approximate value of this
integral. You can see the approximate value that is obtain using Gaussian quadrature

matches very well with the exact solution for this particular problem.



So far, we have seen as a part of this isoparametric quadrilateral element, we have seen
how to derive shape functions for four to 9 node quadrilateral elements and also we
looked at isoparametric mapping concept for two dimensional elements and also we
looked at numerical integration for evaluate the integrals over two dimensional domains.
Now, we are ready to develop element equations by taking one, any one of the
quadrilateral elements, so now let us look go and take the simplest elements that we can

have under quadrilateral element category that is 4 node quadrilateral element.
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4 NODE QUADRILATERAL ELEMENT FOR 2D BVP

The differential equation is

i(k,£]+£[ky£]+PT+Q=0
o

X ox

ay

The Galerkin's criteria for the problem gives

[i[ki £]+i[kyﬂ]+PT+Q]NidA -0 i=12.4
A | OX ox ) oy ay

The 4 node quadrilateral element for two dimensional boundary value problems; using
isoparametric mapping and the procedure used for triangular element it is straight
forward to develop finite element equations for any element. Equations for 4 node
quadrilateral element for general two dimensional boundary value problem. we are going
to develop the equations for 4 node quadrilateral element for general two dimensional
boundary value problem. Let us go back and recall what is the differential equation that
we are using for general two dimensional boundary value problem, the differential
equation is something like this which (Refer Slide Time: 38:48) we used when we are

developing element equations using three 3 triangular element.

Now using Galerkin criteria for the problem gives us this equation basically Galerkin
criteria is multiply given differential equation with the weight function. When we are

using finite element method shape function is same as weight functions so integrate the



given differential equation with shape function and how many shape functions, it
depends on what kind of element, one is adopting. So multiply given differential
equation with shape function integrate over the problem domain equated to 0 and this is a

first step and is equation needs to be further simplified for that we use Green’s theorem.
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4 NODE QUADRILATERAL ELEMENT (Continued)

Integration by parts in two dimensions: (Green's theorem)

I vgx—udA +Iuvnde

N
2V Ak =—
e |

A

v

]; ugdA =—£ v %dA +_!;uvnrdS

n,. n, : Direction cosines of boundary normal

And when we are looking 3 node linear triangular elements already gave you this
formulas integration by parts in two dimensions double integral U times partial
derivative of V with respect to x d A is equal to minus double integral over area V times
partial derivative of U with respect x plus line integral U times V x component of
outward normal integrated over the boundary similarly the second equation. These are
the two equations that we get using Green’s theorem and we will be using these two
formulas to simplify the previous equation further x and y are the direction cosines of

boundary normal.
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4 NODE QUADRILATERAL ELEMENT (Continued)

Using Green's theorem on the first two terms we get

H[*,%%— ,%%munou]m

aT ar -
+I{k n +kyg"yJN‘idS=0

):gl

S,

As pointed out earlier, the boundary integral needs to be
evaluated over only that part of the boundary on which a
natural boundary condition is specified.

From the natural boundary condition

S oT JI 5
f} koo My +K En, =—[a(xy)T+B(xy)]

So using these two formulas and simplifying the previous equation. The first two terms
of the previous equation can be simplified using Green’s theorem formula that we just
looked at and that result in this. If you recall we discussed in detail all these when we are
dealing with 3 node triangular element except that the only difference that you have
between that and here (Refer Slide Time: 42:02) number of shape functions are four
whereas earlier number of shape functions are three and the shape function expressions
also are different for four node and three node element, except that this part is similar as
pointed out earlier boundary integral needs to be evaluated over only the part of

boundary on which natural boundary condition is specified.

If you see the second part of the equation, integral needs to be performonly ons 2,s 2 is
the part of boundary on which natural boundary condition is specified because the part of
the boundary and which essential boundary condition is specified, we do not need to
evaluate this integral because it goes as a reaction term in the final equation system that
we get, so we ignored this explanation | have given you when we are looking at 3 node

linear triangular element.

So let me now we are looking at the second integral, the integrant comes the value of it
can be further simplified which comes from the prescribed natural boundary condition.
From the natural boundary condition, the line integral that is the boundary integral over s
2 can be further simplified or further rewritten using this boundary condition that is a k x



times partial derivative of t with respect times x times. x component of normal plus k y
times partial derivative of t with respect to y times .y component of normal is equal to

(minus) alpha t plus beta.
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4 NODE QUADRILATERAL ELEMENT (Continued)

H[k,ﬁﬂ+ky%%fPMT70Ni]dA

+ [ (aNT +BN)dS =0

s,

Substituting this quantity into this equation, it can be written and now we need to make
substitution of shape function expressions. There are four shape functions for 4 node
quadrilateral element.

(Refer Slide Time: 44:53)

4 NODE QUADRILATERAL ELEMENT (Continued)

11 2(1-1)

(a) Actual Element (b) Parent Element




The shape functions need to be in the parent coordinates even though or will be mapping
actual element and parent element. Actual Element is shown instead of performing
calculations on the actual element we are going to perform calculations on the parent

element and that is what isoparametric mapping is.
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4 NODE QUADRILATERAL ELEMENT (Continued)

t

4 (-1,1)

(4.-1) 2(1,-1)

The shape functions for the parent element are as follows.

--N:%[(1—s)(1—t) (1+s)(1-t) (1+s)(141) (1—5)(1+t):|I

The shape functions for 4 node Parent Element in terms of s and t can we put in a vector

and we can take the derivatives of shape functions with respect s and t.
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4 NODE QUADRILATERAL ELEMENT (Continued)

Derivatives of shape functions with respect to s and t

%:%[-(14) -t 1+t —(141)]

aN 1 T
5:37(173) ~(1+4s) 1+s 1-s]

Derivatives of shape functions with respect s and t.
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4 NODE QUADRILATERAL ELEMENT (Continued)

y 3

Vectors of nodal coordinates

X3 X4

Yq

Derivatives of shape functions with respect s and t and vectors of nodal coordinates
looking at the actual element. We can write the nodal coordinates here there is a mistake
the vector of nodal coordinates consists of only x 1, x 2, x 3, and x 4 similarly, vector of
nodal coordinates for Y consists of only y 1,y 2,y 3, and y 4, X Y and y 5 should not
appear because of we have only five nodes.
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:= QUADRILATERAL ELEMENT (Continued)

Isoparametric mapping

~oN'

x=N"X,

x
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os 0s

So, using the nodal coordinates x 1, x 2, x 3, x4,andy 1,y 2,y 3, and y 4, we can write

isoparametric mapping relations, which can be compactly written in a matrix and vector



form, N transpose comprises of all the shape functions n 1 to n 4 and X N comprises of
all the X coordinates of all the nodes x 1 to x 4 and once we have this relation, we can
easily take partial derivative of that X with respect to s and with respect to T. Similarly,
Y is equal to N transpose Y N again N transpose is vector of shape functions and Y N is
vector of Y coordinate of all the nodesy 1toy 4,y 1,y 2,y 3, and y 4, once we have

that relation we can easily take derivatives of y with respect s and t.

Once we have this partial derivative of X with respect to s, partial derivative of X with
respect to t, partial derivative of Y with respect s, and partial derivative of Y with respect
to t, we can easily calculate what is determinant of Jacobian and derivatives with respect

to X and Y can be computed.
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4 NODE QUADRILATERAL ELEMENT (Continued)

The derivatives with respect to x and y can then be
computed as follows.

" det J

(R _ ] auim v

oN /oy o/t ox/os ||oN/at

Thus the x and y derivatives of the entire shape function
vector can be written as follows.

g M1 [ayau ayaN]
*Tox detJ\ ot os os at

_oN 1 [6x0N 6x6N]
B, =—-= +

Y“ oy detd| aos as ot

Once we know the determinant of Jacobian we can compute the derivatives of shape
function with respect X and Y. Once we know derivatives of shape function with respect
s and t, because if you see on the right hand side, we have partial derivative of shape
functions with respect s and t and that vector can easily be computed, because shape
functions are in terms of parent coordinates s and t . And thus the x y derivatives of
entire shape function vector can be written writing shape function derivatives with
respect to x as a separate vector B X, we can write from the previous equation, we can

write this relation similarly B y.
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4 NODE QUADRILATERAL ELEMENT (Continued)

Using the parent element shape functions the trial solution
and its derivatives can symbolically be written as follows.

And using the parent element shape functions trial solution and it is derivative. Trial
solution can be written likeas N 1, T1plusN2, T2, plusN2, T3, plusN4,T4ina
matrix and vector form as N transpose d similarly, derivatives of t with respect to X can
be written as B x transpose d, derivatives of T with respect to Y can be written as B y
transpose d.
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4 NODE QUADRILATERAL ELEMENT (Continued)

So, we have the trial solution and also derivatives in terms of finite element shape

functions. Now we can substitute all this information into the equation.
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4 NODE QUADRILATERAL ELEMENT (Continued)

H[k %g+k, %g —PNiT—QNi]dA

+ [ (aNT+BN)dS =0
S,

Substituting the trial solution into the Galerkin criteria and
writing all four equations together in a matrix form we get

[[(k.B,Bd+k,B,B/d-PNN'd-QN)dA
A

{90)
A ﬁg

+ [ aNNddS + [ BNdS =0
8, 8,

In this equation, thus substituting the trial solution into the Galerkin criteria and writing
all four equations together in matrix form we get. There are four equations because there
are four shape functions. Substituting the derivatives of trial solution and trial solution in

terms of finite element shape functions and derivatives of shape function we get this

equation.
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4 NODE QUADRILATERAL ELEMENT (Continued)

The complete element equations can be written in standard
form by defining the following matrices.

[k +k, +ke+k,]Jd=r,+r, or kd=r

where

k,=[[kBBdA k =[[kBBJdA k,=—[[PNN'dA
A s A

k, = [ aNN'dS r,=—[BNdS r, = [[QNdA
o A

f_The integrals involved in the element equations are quite
f""‘émpticaled and usually require numerical integration.

And complete element equations can be written in standard form by defining following

matrices. The previous equation can be rewritten in this manner K x, Ky, K p, K alpha,



K x plus Ky plus K p plus K alpha times D is equal to R q plus R beta, which can be
compactly written as K D equal to R. Each of this matrices and vectors are defined like
this. This is obtained from the previous equation by comparing with previous equation
we can write this; and the integrals involved you can easily notice that integrals involved
in element equations are quite complicated and usually require numerical integrations.
So that is the reason we looked at Gaussian integration in two-dimensional case. In the
next class, we will be looking at the details how to evaluate all these area integrals and

line integrals.



