
Finite Element Analysis 
Prof. Dr. B. N. Rao 

Department of Civil Engineering 
Indian Institute of Technology, Madras 

 
Lecture No. # 22 

 

In today’s lecture we will be looking at general two-dimensional boundary value 

problems, and similar to one dimensional boundary value problem - general one 

dimensional boundary value problem we will be deriving element equations. 

We can do that using either Rayleigh-Ritz method by coming up with equivalent 

functional for the given boundary value problem or we can also derive the element 

equations using Galerkin criteria. Irrespective of whether we adopt Rayleigh-Ritz 

method or Galerkin criteria we require to decide what kind of element, we want to use 

for solving two-dimensional boundary value problems, and accordingly we need to 

express the trial solution before we proceed to get the element equations. 
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Let us look at the problem statement a large class of two-dimensional boundary value 

problems is governed by a boundary value problem of the following general form. 

Where k x, k y, P Q are some specified functions. They can be functions of spatial 



coordinates or constants. So, this is a general two dimensional boundary value problem 

which we require to solve over the domain A, which is an arbitrarily shaped two 

dimensional domain bounded by some surface S and T is the field variable which we are 

after or T x is the desired solution.  
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We need to find solution of this differential equation over the domain A, where A is 

arbitrarily two-dimensional domain bounded by a surface S as shown in figure, where 

coordinates are X Y axis are indicated, and n is a unit outer normal on the boundary and 

this S which is the boundary of domain A. On this boundary either field variable T or its 

derivative can be specified, and boundary S can be divided into two parts. Let S 1 be the 

part of boundary on which T is specified that is field variable value specified, and S 2 is 

a part of boundary on which first derivative of T is specified.  
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If you agree for this, the two possible boundary condition can be expressed as T is equal 

to T 0 on the part of boundary over which T is specified, and this is essential boundary 

condition because order of the equation is zero eth order. And if you see the second 

boundary condition either this can be specified either essential boundary condition can 

be specified or natural boundary condition can be specified. Natural boundary condition 

is the boundary condition which contains first derivative of T, and if you recall the 

general two dimensional boundary value problem that we are trying to solve is a second 

order differential equation. We require two boundary conditions to solve out of which 

one is essential another is natural. 
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So, any of these boundary conditions may be specified and where k times partial 

derivative of T with respect to unit outer normal to the boundary is a derivative of T in 

the outer surface normal direction that is given by this one. This is how k times partial 

derivative of T partial derivate of field variable with respect to unit outer normal is 

defined, where n x n y are components of unit outer normal to the boundary and the unit 

outer normal n can be written as n x i plus n y j. 

This is the problem statement and we require to solve this over the domain A, which is 

bounded by surface S on which either essential boundary conditions or natural boundary 

conditions may be specified. And if you see or if you compare this with general one 

dimensional boundary value problem, you can see this is a just an extension of one 

dimensional boundary value problem. 

And the finite element formulation follows same steps as before for one-dimensional 

boundary value problem with one exception. In general one-dimensional boundary value 

problem, there is no choice of shape of element all the elements that we are chosen are 

line elements even though we looked at both two node element, and three node element. 

However in two dimensions there are many possibilities for element shapes like you can 

have triangle, rectangle, quadrilaterals, square or triangle with curve edges, and 

quadrilateral with curved edges or curved sides. So, we need to look at when we are 



trying to develop element equations for general two-dimensional boundary value 

problem we need to look at the possible element shapes as well. 
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Possible element shapes for 2 - D problems the rectangular, and square elements are not 

very useful for general applications, they can model only rectangular solution domains 

accurately. The triangular and quadrilateral elements are very versatile, they can model 

any two dimensional shape with straight line boundaries. Elements with curved sides are 

effective in accurately representing domains with curved boundaries. 

In this lecture we will derive triangular element shape functions as triangular element is 

the simplest to formulate. As it is based on linear polynomial trial solutions which will 

be seen or which will be clearer when we actually start derived element shape functions 

for triangular three node triangular element. Three node triangular element is based on 

linear polynomial trial solutions in two dimensions, the required integrations for 

assembling the element equations are fairly simple to carry out in closed form. The 

quadrilateral element and element with curved boundaries are formulated using 

isoparameteric mapping which will be seen in the later lectures. 

As a part of this lecture we will be developing or we will be looking at equivalent 

functional for the given two dimensional boundary value problem statement, and 

equivalent functional is required if finite element solution is based on Rayleigh-Ritz 

method. And we also look at how to derive element shape functions for three node 



triangular element. The procedure helps us to understand or to generalize it later for any 

noded 2 D element. And also we look at the Galerkin criteria for two-dimensional 

boundary value problem to derive the element equations. 
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Now, let us look at equivalent functional for general two-dimensional boundary value 

problems statement that we already noted. And before that these are the possible shapes 

for two dimensional elements triangle, rectangle, square, quadrilateral, triangle with 

curved edges and quadrilateral with curved edges or curved sides. 
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Equivalent function for the boundary value problem that we already noted can be written 

as given, where I is the equivalent function and k , subscript x is first derivative of k with 

respect x. Similarly T subscript x is partial derivative of T with respect to x. Similarly, k 

y T , y. Where T, y is partial derivative of T with respect x and T, x is partial derivate of 

T with respect x T, y is partial derivative of T with respect to y. Note that the second 

integral is evaluated only over S 2 the part of boundary over which natural boundary 

conditions are specified. If you recall S 1 is the part of the boundary on which essential 

boundary conditions are specified, and S 2 is the part of the boundary on which natural 

boundary conditions are specified.  

So, the second integral needs to be evaluated on the part of boundary over which natural 

boundary conditions are specified, and this is the equivalent functional for the boundary 

value problem that we noted and this needs to be verified; whether this is the functional 

for the given problem or not. So, here we will be verifying that and this procedure can be 

adopted for any other kind of problem where equivalent functional is given for a 

particular problem, and whether somebody if somebody is interested in verifying 

whether that given functional is corresponding to a particular problem or not the 

procedure is going to be similar. 
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To verify that indeed the equivalent functional which is given the previous slide is 

correct functional, we must show that the first variation of I is zero when the boundary 

value problem is satisfied. So, equivalent functional is given, so we need to check 

whether variation of I is equal to zero or not. If it is satisfied then it is going to be the 

equivalent functional for the given problem, and this can be done by following, 

essentially the same steps as those used for one dimensional problem which we already 

did. 

First step is we need to take variation of I equivalent functional is given, so variation of I 

can be written like this. By using variational identities that we learnt when we started out 

with this variational approach or Rayleigh-Ritz method in the earlier lectures. Now in 

this equation interchanging the order of differentiation and variation in the first two 

terms, because order of differentiation and variation can be interchanged.  
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Interchanging order of differentiation, and variation in the first two terms we get this. 

Basically what we did is variation of derivative of T is written as derivative of variation 

of T, and now we need to look at what is called Green’s theorem to further simplify this 

equation.  
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Now, let us look at two formulas or two identities to simplify the first two terms. These 

are the two identities integration by parts in two dimensions which is also called Green’s 

theorem, integral u times partial derivative of v with respect x integrated over A can be 



written as minus v times partial derivative of u with respect x integrated over A plus u 

times v times x component of unit outer normal to this surface integrated over the 

surface. Similarly, we can write the second equation also which is u times partial 

derivative of v with respect to y integrated over A is equal to minus v times partial 

derivative of u with respect to y integrated over A plus u times v times y component of 

unit outer normal integrated over surface. So, using these two formulas up to identities 

the first two terms of previous equation can be further simplified. 
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When we apply integration by parts on the first two terms we get additional surface 

integrals. If trial solutions are required to satisfy essential boundary conditions then 

variation of T is equal to 0 on the part of boundary over which essential boundary 

conditions are specified, and this is the one of the fundamental requirements which we 

already looked at in the earlier classes when we started out learning various steps of 

Rayleigh-Ritz method. 

To simplify this variation of I equation further we apply this condition. Since, boundary 

S comprises of S 1 plus S 2 and on a S 1 variation of T is equal to 0, because S 1 is the 

part of boundary over which essential boundary conditions are specified. Based on this 

requirement this equation of variation of I can be further simplified. 
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Therefore assuming admissible trial solutions the previous equation of variation of I 

simplifies to this which can be further rewritten in this manner. If you see the first part of 

the equation the integrant of the first integral is nothing but the given differential 

equation would needs to be equal to zero over the domain, and if you see the integrant of 

the second integral it is nothing but the natural boundary condition that is given which is 

equal to zero. 

The boundary integral is zero for natural boundary condition, the domain integral is zero 

if the given or the governing differential equation is satisfied. Therefore, using 

admissible trial solutions variation of I is equal to zero, and which verifies that the given 

are the equivalent function that is we started out with is the correct functional for this 

particular two-dimensional general boundary value problem. So, we got equivalent 

functional for the given general two-dimensional boundary value problem. If you want to 

derive finite element equations we need to substitute finite element approximations of T, 

and derivative of T in terms of finite element shape functions of the element that we 

choose. 

Next step if one want to derive the finite element equations is to look at how to derive 

element shape functions. So, we will be looking at triangular element, simplest two 

dimensional element, three node triangular element, how to derive shape functions of 

that element, so that we can express trial solution and derivative of trial solution in terms 



of finite element shape functions and nodal values before we derive the element 

equations. Once we have those things that is finite element approximation of trial 

solution, and derivative of trial solution in terms of nodal values or nodal parameters and 

finite element shape functions we can get element equations for that particular element. 
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Triangular element for general two-dimensional boundary value problem, placement of 

nodes in finite element formulation the trial solution is expressed in terms of unknown 

solutions at the nodes, and this is what we also observed when we are looking at one 

dimensional problems. 

For one dimensional line elements nodes are required at the ends of element for 

assembly considerations. Similarly or similar considerations for two dimensional 

problems require nodes at least at the corners of the elements. 
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Extra nodes can be placed along sides or the interior of an element. Thus minimum 

number of nodes required for triangular element is three at the 3 corners a typical 

triangular element with three nodes is shown. And if you see the local node numbering is 

in the counter clockwise direction, which is shown or indicated by the arrow and the 

global coordinates of nodes 1 2 3 are also indicated in the figure, and the unknown 

solutions at the three nodes t 1 t 2 t 3 is also indicated. Now, we need to derive element 

shape functions for this three node triangular element. Since, there are three nodes, trial 

solution must have three parameters. So, we need to start with a polynomial having three 

coefficients, a linear polynomial in two dimensions satisfies criteria. 
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Trial solution T is assumed to be a 0 plus a 1 x plus a 2 y which can be written in matrix 

in vector form as 1 x y put in a row vector, a 0 a 1 a 2 put in a column vector where a 0 a 

1 a 2 are unknown coefficients, and if you recall this is the procedure that we are 

adopting here is similar to what we did for one-dimensional two node element or three 

node element is started out with for a two node line element. What we did is we started 

out with u is equal to a 0 plus a 1 x, and then we obtained two equations to solve for a 0 a 

1 by substituting x is equal to x 1, u is equal to u 1 at x is equal to x 1 u is equal to u 2 at 

x is equal to x 2 by substituting this, we obtain two equations we solved these two 



equations to express a 0 a 1 in terms of the nodal values. And once we got a 0 a 1 we 

back substituted a 0 a 1 into u, and group the terms containing u 1 u 2 separately and 

whatever is coefficient of u 1 and u 2. That is, those two are the shape functions for node 

one and node two, n 1 and n 2. 

The procedure that we adopted when we are deriving shape functions for two node line 

element, similar procedure we adopted even for three node line element, two node line 

element is linear element, three node line element is quadratic element in one dimension. 

So, similar procedure will be adopting here, to start with to derive the shape functions for 

three node triangular element, the trial solution is assumed as T is equal to a 0 plus a 1 x 

plus a 2 y. 
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Now T value at node one is T 1 to express trial solution in terms of nodal variables or 

nodal values. We apply this condition at node one T is equal to T 1 and x is equal to x 1, 

y is equal to y 1. Similarly, at node two T is equal to T 2, x is equal to x 2, y is equal to y 

2 at node three T is equal to T 3, x is equal to x 3 and y is equal to y 3. By using these 

conditions we get three equations and we can solve these three equations for a 0 a 1 a 2 

to solve these three equations we can put them in a matrix form. The coefficients can be 

expressed in terms of nodal variables by inverting three by three matrix comprising of 

the coordinates of three nodes of triangular element. 
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So, a 0 a 1 a 2 can be obtained by inverting a 3 by 3 matrix consisting of coordinates of 

nodes one two three and if you notice inverse of the matrix 1 x 1 y 1, 1 x 2 y 2, 1 x 3 y 3 

is not possible, if two of the nodes are not possible if all the three nodes are lying along 

the same line. That is one of the requirements that is a three node triangular element or a 

triangular element in which all the three nodes are almost collinear is very bad shaped 

element, because in such a case inversion of this matrix is not possible or inversion of 

this matrix is difficult. That is on the side node, now by doing by carrying out the 

inversion of the matrix, and multiplying with t 1 t 2 t 3 we can get this equation where a 

is area of triangle, triangular element and f 1, f 2, f 3, b 1, b 2, b 3, c 1, c 2 and c 3 are 

defined. We now expressed a 0 a 1 a 2 in terms of t 1 t 2 t 3. Now substituting a 0 a 1 a 2 

back into the equation that we started out with t is equal to a 0 plus a 1 x plus a 2 y.  
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Substituting the polynomial equations equation we get the trail solution in terms of nodal 

variables or nodal parameters. Substituting a 0 a 1 a 2 back into the equation T is equal to 

a 0 plus a 1 x plus a 2 y, we get this equation which can be compactly written as N 

transpose d where N is a vector comprising of shape functions N 1 N 2 N 3, d is a vector 

comprising of nodal variables or nodal parameters or nodal values T 1 T 2 T 3. Where N 

1 N 2 N 3 are the required shape functions and they look like this in terms of f 1 b 1 c 1, f 

2 b 2 c 2, f 3 b 3 c 3 where f 1 f 2 f 3, b 1 b 2 b 3, c 1 c 2 c 3 are all defined in the 

previous slide. 

Since all these f‘s b‘s and c’s are dependent on the coordinates of the nodes of three node 

triangular element. This can be easily computed, once the coordinates of nodes are 

known and if you see N 1 N 2 N 3, these are linear in terms of x and y. So that is why 

three node triangular element is also called constants strain triangular element. Since N 1 

N 2 N 3 are all linear in x and y, derivative of N with respect x derivative of n, all these 

n’s with respect x and y is going to be a constant. That is why three node triangular 

element is also called constant strain triangular elements c s t. So, T can be written as N 

1 T 1 plus N 2 T 2 N 3 T 3. 
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The derivative of trial solution T with respect to x and y can be written like this. You can 

see derivative of T with respect x is a constant, because b 1 b 2 b 3 are all constant and T 

1 T 2 T 3 are the nodal parameters and A is a constant which is area of triangle. Finally, 

derivative of T with respect to x is constant. That is why this element is called constants 

strain triangular element and similarly, derivative of T with respect to y is constants and 

it is going to be function of c 1 c 2 c 3, and each of this can be compactly written as B x 

transpose d, B y transpose d. 

Now we derived element shape functions for three node triangular element, we expressed 

trial solution, derivative of trial solution in terms of finite element shape functions, 

derivative of finite element shape functions and the nodal parameters or nodal values. 

Now, we can plug in all this into the equivalent functional and get the element equations 

f, we decide to use a Rayleigh-Ritz method and we can also adopt Galerkin criteria to 

derive the element equations. So, what we will be doing is we will now look at Galerkin 

criteria to derive element equations for the same general two-dimensional boundary 

value problem. 
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Let us recall the problem that we are looking, this is the differential equation we need to 

solve over domain A subjected to the boundary conditions, these are the boundary 

conditions. 
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Galerkin criteria corresponding to the given boundary value problem can now be written 

like this. Galerkin criteria is multiply given differential equation with a weight function 

integrate over the problem domain equated to 0, and if you decide use finite element 

method in conjunction with Galerkin criteria, weight function is same as shape function 



and if it is a three node triangular element there are three shape functions. So, I takes 

values 1, 2, 3, and the first two terms inside the integral can further be simplified using 

integration by parts in two dimensions that is the Green’s theorem that we already looked 

at. 
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Let us once again look at those identities the formulas. These are the two formulas that 

we looked at earlier we will be using this two formulas to simplify the previous equation 

further. So, applying integration by parts. 
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And the first two terms inside the integral of the previous equation we get this equation, 

and I takes values 1 2 3. 
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So, further we can write the previous equation like this writing all the three equations 

together in matrix form we get this form, and if you see the boundary integral it needs to 

be evaluated over S 2; that is part of the boundary on which natural boundary condition 

is specified. And this equation can be rewritten in this manner, if you compare these two 

equations you can see in the first equation the boundary integral needs to be evaluated 

over S through, whereas in the second equation boundary integral it is written as to be 

evaluated over the entire boundary.  

And why this is written like this is because the boundary S is equal to S 1 the part of the 

boundary on which essential boundary condition is specified, and part of boundary on 

which natural boundary condition is specified S 2. And the integral value over S 1 is 

unknown since along S 1, essential boundary conditions are specified and also this term 

the integral over S1 as we will see in a while it is going to show up as a reaction term in 

the element equations, and which we also observed when we are deriving element 

equations using Galerkin criteria for one dimensional problem. Further explanation on 

this integral which is over S 2, the first equation is replaced with integral S. 
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In the second equation further explanation on this can be explained like this, the 

boundary integral can be split into S 1 and S 2. That is, this integral over the boundary S 

can be written as integral over S 1 plus integral over S 2, and integral over S 1 is 

unknown, because essential boundary conditions are specified. 

However as was the case for one-dimensional problems, there is no need to evaluate over 

S 1. Since the corresponding nodal parameters are known, essential boundary conditions 

are specified and the equation containing these terms can be removed from the system 

before solving for unknown nodal parameters, and this is what we did even when we are 

deriving the element equations for one dimensional problems. Thus integral over S 1 can 

be ignored from the element equations and the integral over S 2 can be evaluated by 

using natural boundary conditions. So, this is the reason why the integral over S is 

replaced with integral over S 2 in the second equation. 
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And now integral on the boundary during assembly process the boundary integral term 

from adjacent elements cancels as long as all surface integrals are evaluated in a 

consistent manner. To understand this statement, let us consider the case when integrals 

are evaluated by moving counter clockwise around elements like these two elements. So, 

what the statement says is during assembly process boundary integral term from adjacent 

element cancels as long as all surface integrals are evaluated in a consistent manner that 

is for all element either boundary integrals are evaluated by moving in the counter 

clockwise direction or clockwise direction. In the figure for demonstration the integrals 

are evaluated by moving in the counter clockwise direction. 

Let us consider evaluation of boundary integral for each of these elements along the edge 

2 3, so far one of the element integration is from 2 to 3 for the other element integration 

is from 3 to 2. 
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The common edge between two elements will get integrated from two opposite 

directions resulting in same integral, but with opposite sign one integral is evaluated 

from two to three other integral is evaluated from three to two. So, when we add these 

two integrals they cancel each other, because they have the same value but with opposite 

sign thus all thus for all interior elements surface integral term can be ignored.  
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This argument is valid only when we have exact solution that is the integral value 

coming from each of this element is same, but when we are using finite elements after 

approximate solution. For approximate solution there is a residual term however it is 

ignored, so that a solution for the remaining unknowns can be obtained for linear element 

there is always a discontinuity of slope no matter how small the elements size is. The 

magnitude of this residual can be used as an indicator of quality of approximate solution. 

So, whatever is mentioned that is during assembly process boundary term from adjacent 

elements cancels this is in a way is not going to satisfy hundred percent. Since, we are 

trying to find approximate solutions, but even though it is not satisfied we are going to 

ignore that and the magnitude of the residual can be used as an indicator of the quality of 

approximate solution. 
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Now, let us look at how simplify further the boundary integral term using the specified 

natural boundary conditions, the integral over S 2 is this one this can be evaluated using 

natural boundary condition.  
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And now let us see what is the natural boundary condition that is given is stated as this 

one k x times partial derivate of T with respect x times n x plus k y times partial derivate 

of T with respect n y is equal to minus alpha T plus beta. Substituting this a into the 

integral it can be simplified in this manner, and substituting the finite element in terms of 



finite element nodal values, and shape functions it can be further simplify in the manner 

shown in the equation. Substituting this integral in terms of finite element shape 

functions and nodal parameters are nodal values into the earlier equation. 
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The complete element equations can be written as k x plus k y plus k p plus k alpha times 

d, where d is the vector comprising of nodal parameters are nodal values is equal to r q 

plus r beta for it can be compactly written as k d equal to r where k x k y k p are define, 

and all these integrals can be evaluated using numerical integration or they can be 

evaluated in closed form, if the integrand is not complicated. So this is how k x k y k p 

are define and rest of the terms. 
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k alpha is defined like this which needs to be evaluated over surface on which essential 

boundary on which natural boundary condition is specify. r beta again boundary on 

which natural boundary condition is specify r q is a domain integral, and these evaluating 

all these quantities we can get element equations for a 3 node a for the two-dimensional 

boundary value problem adopting. Once we use shape functions corresponding to and 

trial solution corresponding to three node triangular element we get element equations 

for three node triangular element. 

And please note that k alpha, r beta are added only for those elements for which natural 

boundary conditions are specified. If there is no natural boundary conditions specified 

these need not to be evaluated, equations associated with essential boundary conditions 

must be removed from global equations before the solution. And in these equations we 

need to substitute triangular element shape functions to further simplify these equations 

to get element equations for three node triangular element for two-dimensional boundary 

value problem which we will be seeing in the next class. 

 


