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In the last class, we have seen there, how to calculate the displacements, transverse 

displacements, bending moment shear force in beam subjected to thermal stresses or 

temperature stresses. In today’s class, we are going to solve an example using whatever 

we learnt. The displacement equation to calculate displacement at any point along the 

beam length and also bending moment at any point along the beam length and shear 

force at any point along the beam length when beam is subjected to thermal stresses and 

let us go back and see what we have done in the last class. 
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Considering a beam element which is subjected to a linearly varying temperature over its 

depth, we developed the equations and this is the beam element subjected to a 

temperature change at delta capital T subscript t, is the change in the top surface 

temperature delta capital T subscript b is the change in the bottom surface temperature; h 

is the depth of the beam. 



When a beam element like this is subjected to temperature change, its going to be 

subjected to, it is going to experience curvature. Because of that, it is going to also be 

subjected to uniform moment which is going to be constant along its span and when we 

apply end constraints for this kind of elements, fixed end moments are going to be 

developed which are indicated there - M FT and whether is a change in the temperature 

of the top surface and bottom surface curvature, that this beam element is going to 

experience is given by this and corresponding ones, we know the curvature; we know the 

relation between the curvature and bending moment; so we can find what is M FT. 

Once we get M FT and please note that the solution procedure for beam subjected to the 

temperature changes is similar to that we adopted for beams subjected to uniformly 

distributed loads and because, here moment is a constant uniform moment along length 

of the beam. As beam span it is you are going to have uniform moment. So, instead of 

uniformly distributed load we have uniform moment over the length of the beam. 

So the solution, procedure is similar to that we adopted for a uniformly distributed load 

and if you recall, what we did for uniformly distributed load is try to find for a beam 

span for the given loading conditions tries to find what are the fixed end solutions and 

using those fixed end solutions, put them in a vector form following the sign conventions 

for applied loads and moments and degrees of freedom. Put all these moments and forces 

in a vector form and the equivalent load vector for solving the displacements transverse 

displacements. Rotation is going to be a sine; we need to apply a sine change to the 

vector that we get from fixed end solutions. 

So, using that approach the equivalent load vector turns out to be this, because, there is 

no shear along the span of the beam only bending moment will be there and the 

equivalent load vector using the procedure that putting the fixed end solution in a vector 

form and reversing this sign we are going to get equivalent load vector. 

Once we get the equivalent load vector rest of the solution procedure is similar to what 

we did for beam subjected to uniformly distributed load or concentrated loads. So, we 

need to assemble the element equations and we need to apply or using the element 

connectivity or a node numbers and elementary numbers. We can get the global equation 

system and applying the boundary condition. We can solve for the unknowns; that is 

rotations and transverse displacements. Once we get these values we can go back to each 



element and now, since in thermal stresses the beam subjected to thermal stresses; it is 

subjected to uniform moment. We need to apply fixed end correction for this final 

solution that we get from finite element. 
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Let us see in detail all the steps by taking an example. Once, we get the nodal values we 

get, we can interpolate by using this equation displacements and this is what I 

mentioned. The first term is finite element interpolation; interpolation using finite 

element shear functions and second term is the correction term which is obtained by 

integrating the curvature; that is expressed by the beam element twice. 

If you integrate curvature twice and when this beam element is restrained at the ends this 

is fixed end solutions. So, a displacement at the ends at s is equal to 0 and s is equal to 1 

its value is 0. So, applying the condition that we transverse displacement is equal to 0 at s 

is equal to 1 and s is equal to 0 and integrating twice the curvature equation we are going 

to get the fixed end solution which acts like a correction term and that is what is written 

there as a second term and that acts like a correction term to the transverse displacement 

obtained from finite element interpolations. 
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Now, moments similarly, correction term is there, in addition to the finite element 

interpolated values and please note, that there is no shear because of these thermal 

stresses and fixed end condition. So, there is no correction term for shear force to get 

clear idea about how to approach a problem using all these concepts; let us take an 

example. 
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Determine bending moment and shear force in the continuous beam shown in the figure. 

And, the beam is actually, it is a beam and a spring combination is there. The beam is 



subjected to linear temperature change and all units are given in both FPS and SI units, 

since the numbers given in FPS units are round numbers. 

Let us approach this problem using the FPS values. So, the linear temperature change of 

50 degrees fahrenheit through the depth that is delta capital T subscript t minus delta 

capital T subscript b, that value is 50 fahrenheit and rest of the material properties, 

Young’s modulus moment of inertia length and spring constant coefficient of thermal 

expansion, height of the beam all quantities are given there. 

This problem as you can notice, there are two kinds of elements. One is beam element; 

another is a spring element. So, we will take two elements and three nodes the node 

numbers are shown in the figure 1, 2, 3 and beam element comprises of nodes 1 and 2 

and spring element comprises of nodes 3 and 2. 

In this problem, you can notice that node 1 and node 3 are constraints. So, all degrees of 

freedom at node 1, since this is a beam element at node 1, we have 2 degrees of freedom 

v 1 theta 1 and that node 3 we have only 1 degree of freedom. The displacement along 

the axial direction of the spring and at node 2 since, it is a part of both beam and spring 

element, it is going to have 2 degrees of freedom rotation and also transverse 

displacement. So, v 2 theta 2 are the degrees of freedom at node 2 and now node 1 1 

node 3 are fixed. The corresponding degrees of freedom are 0 that is v 1 is equal to 0 

theta 1 is equal to 0 and also the displacement at node 3 is going to be 0; v 3 is going to 

be 0. So, now let us take this discretization and then we need to assemble the element 

equations. 

Before doing that, we need to find imagining when there is a temperature change. It is a 

beam element going to be subjected at an uniform bending. So, imagining this beam 

element to be fixed at both ends, we need to calculate what is the fixed end moment 

solution or fixed end solution imagining. This beam element to be fixed at both ends and 

that is used to calculate equivalent nodal vector for beam element. So, we need to 

calculate what is M FT. M FT is the fixed end moment because of the temperature 

change and that can be concluded using the EI values and also temperature change 50 

fahrenheit alpha coefficient of thermal expansion and the depth of the beam is also given 

there. 
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So, using these values we can calculate what is M FT and this is what is shown here. 

Please note, that we are working out in FPS units and we got M FT. Following the sign 

conventions for applied moments and shears and putting the fixed end solution in a 

vector form and reversing this sign, we are going to get equivalent nodal vector for beam 

element. 

We got equivalent nodal vector for beam element and now, we can write the element 

equations for beam element. The stiffness matrix is similar to what we derived earlier. 

So, substituting all the quantities that is Young’s modulus, moment of inertia and length 

of the beam, all these numerical values into the stiffness matrix that you already have for 

beam element, we are going to get element equations for beam. 
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Here the equivalents between the fixed end moments and the equivalent nodal vector are 

shown here. So, once we get the fixed end moment M FT, we need to reverse the sign 

change; we need to reverse the sign and we get the equivalent nodal forces and then we 

can write the element equations for beam element. Please note that beam element the 

degrees of freedom are v 1 theta 1 v 2 theta 2. 

Now, coming back to the spring element spring element has 2 degrees of freedom v 3 

and v 2. And, we need to decide whether, how we number these nodes? Whether node 3 



is local node 1 or whether node 3 is local node 2? Here the notation that I am following 

is global node 3 is local node 1; global node 2 is local node 2. 
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So, using with that understanding we get element equations for spring element like this. 

So, local node 1 for spring element is 3 local node 2 for spring element is global node 2 

and now, we got element equations for beam element and element equations for spring 

element. 

Now, we need to assemble the global equation system and before doing that we need to 

have a clear idea where the contribution from each of these elements will be going. The 

element contribution from beam element goes into, actually there will be total 5 degrees 

of freedom for this particular problem because, at node 1 we have 2 degrees of freedom; 

at node 2 we have 2 degrees of freedom; at node 3 we have only 1 degree of freedom. so 

total global equation system will be a 5 by 5 and let us see how the contribution goes in 

into this global equation system. 

A beam element contribution goes into 1, 2, 3, 4 rows and columns of the global 

equation system and the tricky part is, spring element where the contribution goes in to 

decide that actually spring is connecting node 3 and a node 2. At node 2 we need to note 

that the common degree of freedom between spring element and beam element is 

transverse displacement v 2. 



So, the spring element goes into the location or locations 5 and 3 rows and columns of 

the global equation system. So now, since we numbered node 3 are as a local node 1 and 

node 2 as local node 2 for spring element here in the spring equations that is 5 minus 5 

minus 5 5 the contribution at 1 1 location of this equation system goes into a 5 5 location 

of the global equation system. The quantity that is minus 5 which is at 1 2 location of this 

equation system it goes into 5 3 location. 
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Similarly, the minus 5 which is at the location 2 1 it goes into 3 5 location of global 

equation system and the component which is at 2 2 location; it goes into 3 3 location of 

the global equation system with this understanding. We can get the final assembled 

global equation system and please note that l node L is fixed so v 1 theta 1 are 0. 
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Wherever the displacements and rotations are constraint, reactions will be there the 

reactions will be developed. So, the reaction at because of the constraint of v 1 is R 1 

reaction because of constraining theta 1 is M 1 and also v 3 is constraint so, 

corresponding reaction is R 3. Eliminating or eliminate cancelling the rows and columns 

corresponding to the degrees of freedom which are 0, we are going to get reduced 

equation system which is going to be 2 by 2 equation system and which we can solve and 

get the values of v 2 and theta 2. That is, v 2 is nothing but transverse displacement at 

node 2; theta 2 is nothing but rotation at node 2. 

Once we get the v 2 theta 2 values which are given here, once where we get these values 

we can go back to each element that is a beam element and spring element and find the 

element quantities like the bending moment and shear force in the beam element ends. A 

spring element will have only axial force. We can find what is the axial force in spring 

element using these values. 
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So bending moment here, we need to apply the fixed end solution correction. That is 

what is done; bending moment from superposition of fixed end temperature affects in 

finite element solution. 

The first part is the correction term and the second part is finite element interpolation 

using second derivative of shear functions. Now, we know what is v 1 theta 1, v 2 theta 2 

values; and v 1 theta 1 are 0 by virtue of the boundary condition and v 2 theta 2, we just 

calculated. So, substituting all these quantities we are going to get s and by varying s 

from 0 to 1, we can sweep over the entire span of the beam and we can get an idea how 

bending moment is varying over the span of the beam. 

Similarly, we can calculate shear force but noting that because of the temperature affects 

more shear force or fixed end shear is not going to be there. 
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So no shear for shear force node correction, because of the temperature affects is 

required and the shear force is given by this formula using the third derivative of shear 

functions, finite element shear functions for beam element and using the nodal values we 

get this shear force value. 

Please note that the bending moment and shear force that we just calculated using these 

values or expressions, we can actually draw the free body diagram for beam element 

using the sign convention for moments and internal shears. And, now let us calculate, 

what is the spring force? Spring force is, please note, that local node 1 for spring element 

is 3 and local node 2 for spring element is 2; so, the formula is spring constant times v 2 

minus v 3 and since v 3 is 0 because of the virtue of the constraint that is applied at that 

location. So, spring force is given by k times spring constant times transverse 

displacement at node 2. That is what is used to compute the spring force there and you 

can see that the spring force turns out to be negative value. Negative value indicates it is 

in compression; spring is in compression and it is expected because, when there is when 

the top temperature of the beam element is higher than bottom temperature of the beam. 

It is going to bend in such a manner that spring is going to be in compression. If the 

temperature changes in the reverse direction that is, bottom temperature is higher than 

top temperature then, spring is going to be in tension. 
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Now, we are ready to draw the free body diagrams using the sign conventions and here 

the end that is, the moment and shear at the ends or the applied curves. Suppose, if you 

want these the value of the rotations and the transverse displacements we calculated v 2 

theta 2; if you want that, what is the equivalent and nodal values of moments and shear 

that we need to apply, that can be calculated using these. The element equations for beam 

element multiplied with v 1 theta 1, v 2 theta 2 and applying the fixed end correction, we 

are going to get the corresponding shear and moments. 

Similarly, for spring element and using either these values or the previous values that we 

calculated for moment and shear, using the corresponding sign conventions for if you are 

using the expressions that we used, that we computed or the values that we computed for 

internal moments and shears using the nodal values a while back, using those you can 

actually draw the free body diagram. Or, you can use these values and you can draw the 

free body diagram and using the appropriate sign conventions. 
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So, the free body diagram indicating all the forces are shown here. You can easily check 

that each of these elements that is beam element and spring element is itself in 

equilibrium. Now, this completes the topic on beams and now we will start looking at a 

slightly different topic which is analysis of structural frames and for the structural frame 

axial for analysis of structural frame, we will be using whatever we learnt till now. That 

is, the beam element equations and also the equations that we developed for axial 

deformations. 
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So, the beam element and axial deformation element presented in the earlier lectures are 

combined together to form a general element for analysis of 2 and 3 dimensional frames. 

Members in a plane frame are designed to resist axial and bending deformations. So, it is 

a combination of a beam element and an axial deformation element. The 2 dimensional 

beam element and axial deformation element are combined together to form an element 

which can be used to analyze any planar frame work. And, while doing this it is assumed 

that the axial and bending effects are uncoupled from each other, which is reasonable 

assumption within the framework of small deformation theory. 
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So, the equations for a plane frame element can be written directly from axial 

deformation and beam bending equations that we just looked at in the earlier lectures. If, 

the element is like this as shown in the figure (Refer Slide Time: 25:50) and please note 

that this coordinate system which is indicated in the figure is local coordinate system, 

each node has a 3 degrees of freedom; two translations and 1 rotation at each node, you 

have two translations and 1 rotation. d 1 and d 4 are the degrees of freedom 

corresponding to the axial deformation and d 2 and d 5 are corresponding to the 

transverse displacement and d 3 d 6 are corresponding to the rotations. 

Similarly, these are the nodal degrees of freedom similarly apply nodal and uniformly 

distributed load. Because of that, what are the equivalent nodal forces and moments that 

are going to be developed? Those are also shown in figure b. 



So, d 1 and d 4 are the degrees of freedom corresponding axial deformation. We can 

write the element equations for these degrees of freedom d 1 and d 4 using the axial 

deformation element equations that we learnt. And, d 2, d 3, d 5, d 6, these are the 

degrees of freedom corresponding to the bending. So, we can use element equation 

system corresponding to the beam bending and write the element equations for these 

degrees of freedom. 
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So, for axial deformation these are the element equations for beam bending. These are 

the element equations and we already started out with an assumption that axial 

deformation and beam bending effects are uncoupled. Carefully noting down the degrees 

of freedom in the order of they appear, we can get the global equation system for frame 

element. The complete equation for a planar frame element in the local coordinate 

system are simply a combination of these two sets of equation; that is, element equations 

corresponding to axial deformation and element equations corresponding to beam 

bending. 

We need to appropriately place the contributions from each of these two things; that is, 

axial deformation of beam bending to get the global equation or complete element 

equation for frame element in the local coordinate system. And, that is what is shown 

here. 
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Where a 1 only upper triangular stiffness matrix is shown; lower triangular, because of 

this symmetry of the stiffness matrix, lower triangular components can be easily be 

found and please note that in this equation system a 1 is nothing but EA over L which is 

nothing but it is coming from axial deformation effects. And, a 2 is EI over L cube that is 

coming from bending effects. 
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Now, what are the equivalent nodal force vector forces due to the uniformly distributed 

load applied on the frame element? That is shown in the figure when we started out this 



frame elements and frame element is subjected to uniformly distributed load acting the 

transverse direction. And, with no axial forces the equivalent nodal vector is similar to 

what we have for beam element except that, the locations corresponding to the axial 

forces is equal to 0. Rest of the components, are similar to what we have for a beam 

element. So, the equivalent nodal forces due to uniformly distributed load of q per unit 

length is given here. 

We have the element equations for a frame element in the local coordinate system but, 

usually this frame element will be arbitrarily oriented in space. If you take any structure 

we need to even look at that transformations and other things. So, for proper assembly, a 

global x y coordinate system is chosen for the entire frame. All element nodal 

coordinates are defined with respect to this coordinate system; an arbitrarily oriented 

plane frame is shown here. 
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Now, whatever equations that we have in the local coordinate system, that we need to see 

how they get transformed into this global coordinate system x y. local x axis is defined as 

a vector or defined by a vector going from node 1 to node 2 and local y axis is 

perpendicular to local x axis or local y axis is at 90 degrees counter, clockwise from the 

local x axis. 



The applied forces and moments are assumed to be positive along global coordinates, 

coordinate directions, the distributed loads applied over an element of positive if, they 

are acting in the positive local y direction positive directions for internal forces moments 

and shears are shown here. 

The sign convention: so the sign convention is similar to what we adopted for beam 

element and also what we adopted for axial deformation elements. So, the same sign 

convention is carried forward because basically, what we are doing is a frame element. 

We are assembling the element equations for a frame element based on element equation 

for axial deformation element and bending element. 
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So, the degrees of freedom, global degrees of freedom are u 1 v 1 theta 1, u 2 v 2 theta 2; 

u 1 is going to be the axial displacement at node 1; v 1 is transverse displacement at node 

1 and theta 1 is rotation at 1. Similarly, u 2 v 2 theta 2, are the corresponding degrees of 

freedom at node 2 and this is a global load vector. Global load vector comprises of axial 

force at node 1 shear force at node 1, moment at node 1. Similarly, F x2 F y2 M 2 are the 

corresponding forces and moments at node 2. A coordinate transformation between local 

x y coordinate system and global x y coordinate system, gives equation that can be 

assemble directly for any plane frame problem. 
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The transformation matrix, that is local force vector; how it is related to global force 

vector is given by this transformation and the force vector on the right hand side is the 

force vector in the local coordinate system and the force vector on the left hand side is 

the force vector in the local coordinate system. What you have on the right side is 

transformation matrix and the force vector in the global coordinate system. This can be 

obtained; this transformation matrix can be obtained using or noting that only forces get 

transformed moments, are not going to get transformed within the coordinate system. 

The transformation of forces is similar to what we adopted for axial deformation 

elements and this C and S C is nothing but cosine alpha. Alpha is nothing but the angle 

between the local x coordinate or local x axis and global x axis measured in the counter 

clockwise direction. Alpha, once we know alpha, we can find what is cosine alpha. 

Cosine alpha is, once we know the coordinates a global x y coordinates of the nodes, we 

can find what is cosine alpha and sine alpha is in the formulas there. And, this equation 

can be written compactly as r l is equal to T times r; where r l is the local force vector or 

local load vector and r is global load vector; T is the transformation matrix and also as in 

the axial deformation problem, or truss problems, the displacements also get transformed 

in the same manner as the forces. The inverse relation between the global load vector and 

local load vector is given by r is equal to T transpose r l because this transformation 

matrix is orthogonal. 
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Orthogonal matrix is a matrix for which T transpose or inverse is same as transpose. As I 

mentioned, displacements are transformed using the same transformation matrix and the 

inverse relation that is d is equal to T transpose d l element equations. The local 

coordinate system can be written as k l d l is equal to r l and d l is equal to T d is 

substituted and both left hand side and right hand side are multiplied with T transpose 

and k is defined as t transpose k l T. Then finally, it can be written as kd equal to r k is 

equal to T transpose k l T. 

Earlier we have looked at this kind of thing when we are solving 2 dimensional or 2D 

plane truss and 3D space truss problems. We have similar kind of transformations except 

that the transformation matrix here is different. So, after carrying out the indicated matrix 

multiplication, the plane frame element equations in the global coordinate system are 

obtained for 1 element. We obtained and similar process we can repeat for other 

elements. 

Assembly and solution procedure for nodal degrees of freedom remain same as what we 

are doing till now. Once nodal displacements are known, element quantities 

displacements, axial forces, moments, shears at any point along an element, can be 

computed using shear functions and their derivatives for each element. The global 

displacements must be transformed into local displacement before performing the 

element level calculations for an element with uniform load. The equation in terms of 



local coordinate s that is s going from 0 to 1 s value is equal to 0; at node 1 s value is 

equal to 1 at node 2. 
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For that kind of element axial degrees of using the computed degrees of freedom, we can 

find axial force in frame element and also shear force. Since this frame element is 

subjected to distributed load, we need to apply fixed end correction and s goes from 0 to 

1 s, 0 s is equal to 0, corresponds to node 1 s is equal to node 1 corresponds to node 2. 
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Similarly, we can also calculate bending moment where also, we need to apply fixed end 

solution correction. So, this is the procedure for solving frame problems to illustrate this 

procedure; let us take an example. 
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Analyze the plane frame shown in figure below: cross sectional areas, moment of inertia 

of cross section; there are two members here. For both the members, cross sectional area 

and moment of inertia of cross section same; the values are given both in FPS units and 

SI units and material properties and distributed load, the value magnitude and also the 

direction, is also given. So, its acting, the distributed load in the acting in the downward 

direction and since the values given in FPS units are in round numbers, let us proceed 

and solve this problem in FPS units. Please note that for the element numbers and the 

node numbers that are given in the figure, node 1 is fixed. All degrees of freedom are 

constrained, that is, u 1 v 1 theta 1. 

Similarly, all degrees of freedom at node 3 are constrained, that is, u 3 v 3 and theta 3 are 

constrained and only node which as non-zero degrees which is going to have non-degree 

0 degrees of freedom is node 2 - which is going to be u 2 v 2 and theta 2. We need to 

solve for these values and element 1 is assumed to go, or assumed to be along the vector 

which is going from node 1 to node 2. Element 2 is assumed to be along a vector which 

is going from node 2 to node 3 and all the degrees of freedom are indicated there. 
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So, now by choosing arbitrarily, element 1 goes from node 1 to node 2 and element 2 

goes from node 2 to node 3. The local coordinate system for each element shown here: x 

axis is oriented along the axis of the member and y axis is at 90 degrees with respect to x 

axis in the counter clockwise direction. 

Similarly, for element 2 also the x axis and y axis are shown. So, now we know the 

global x axis y axis with respect to global x axis and y axis. We can find what are the 

coordinates of node 1, node 2 and node 3 using the global coordinates - global x, y 

coordinates of node 1, node 2, node 3. 

We can calculate what are the direction cosines and once you know the direction cosine, 

since material properties and the length of the members even for element two length is 

already given straight forward for element 1, we need to use the nodal coordinates of 

nodes; the global coordinate of node, we can find what is the length of the element and 

material properties are given cross sectional areas are given. 
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So, we are ready to assemble the element equations. Substituting numerical values into 

the element equation that we derived and noting the nodal coordinates, the global nodal 

coordinates, we can calculate length and also direction cosines. Hence, since there is no 

distributed load on element 1, we do not need to assemble the load vector for element 1. 

Also, at the end when we are calculating the element quantities, we do not need to apply 

any correction fixed end solution correction for element 1 and using the material 

property and length values, we can calculate what is E by L and similarly, a 1 and a 2 

values can be calculated. 

Once these numerical values are known, we can find what is the local stiffness matrix 

and also using direction cosines we can find what is the transformation matrix and also 

what is the using the load value that is given which is 0. Local load vector is going to be 

0 anyway and that value can also be found. Once we have all these, we can find what is 

the global equation system by knowing the global stiffness matrix. 
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Global stiffness matrix for this element 1 is going to be, or stiffness matrix for element 1 

in global coordinate system is going to be T transpose k l T. All the computations are 

shown here; this is transformation matrix and local stiffness matrix and local load vector. 



(Refer Slide Time: 47:31) 

 

Stiffness matrix for element 1 in the global coordinate system is given by T transpose k l 

T. Please note that this element 1 contribution goes into the locations and at node 1, you 

have, or at each node you have 3 degrees of freedom. So, element frame element 1 is 

connecting nodes 1 and 2; so the contribution goes into 1 2 3 4 5 6 rows and columns of 

the global equation system. 

Element 2 is connecting nodes 2 and 3; so the contribution goes into 4 5 6 7 8 9 rows and 

columns. So, total global equation system will be 9 by 9 equation system but instead of 

assembling 9 by 9 equation system, we can adopt a smart way and we can at the time of 

assembly of element global equation system itself, we can directly assemble the reduced 

equation system noting the degrees of freedom which are fixed. 
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Anyway, before doing that let us see element 1 nodal coordinates. Using these values we 

can find what are the directions. Cosines length is straight forward; it is given and 

element 2 is subjected to UDL (uniformly distributed load). So, we need to calculate the 

fixed end solutions because, those values are required for assembling the equivalent load 

vector. Once we have all these values, we can write what is transformation matrix and 

what is the local or stiffness matrix for element 2 in the local coordinate system. 
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Please note that this element is oriented along the direction of a global x axis. So, local x 

axis and global x axis are in the same direction. Transformation matrix is going to be 

identity matrix; so local the stiffness matrix for element 2 in the local coordinate system 

will be same as stiffness matrix for element 2 in the global coordinate system. So, now 

this is a load vector for element 2 in the local coordinate system. 

Since local coordinate system is same as global coordinate system, even the load vector 

in the global coordinate system is going to be same as this one. We do not need to apply 

any transformation because the transformation matrix is identity matrix. Because of the 

boundary conditions, all the degrees of freedom at node 1 and 3 are 0. There is no need 

to assemble corresponding rows and columns further since, the specified values are 0. 

The corresponding columns will not contribute anything either; so, the following…, thus 

in the following global equations, only the terms associated with node 2 are written. 
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So, for element 1, the terms associated with node 2 are and they if you look at the 

stiffness matrix, is corresponding to element 1. We have written whatever is there in the 

lower quadrant; those components or those values contribute to the global or reduced 

equation system; so those values are written here. 

From element 2 also, an element 2 is connecting nodes 2 and 3 and it is in a direction. 

Element 2 is in a direction of vector which goes from node 2 to node 3. So, whatever is 

there, the values in the upper quadrant of element 2 stiffness matrix, that contribution 

comes into the reduced equation system and that is what is written here for element 2 and 

adding these two equations, global equations are obtained. Global equations are simply 

sum of these two equations , two element equations (Refer Slide Time: 53:00). 
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So, adding the corresponding component value we are going to get reduced global 

equations which we can solve for u 2 v 2 and theta 2. The solution gives us the value of u 

2 v 2 and theta 2 and once we get u 2 v 2 theta 2, we know the rest of the degrees of 

freedom are 0. We can go to each element and find element forces. Element forces can 

easily be obtained by first determining the local displacements because, whatever we 

calculated, these are all global degrees of freedom. 

We need to back calculate what are the local degrees of freedom or local displacements 

and then using shear functions and their derivatives we can obtain what are the moments 

and what are the shear forces and axial forces. So, let us go and do it for element 1 and 

element 2 separately. 
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Element 1, the nodal solution that we get, that we obtained just now is written here. That 

is, u 1 v 1 theta 1, u 2 v 2 theta 2 values. This is the global displacement vector and we 

need to find local displacement vector using the relation coming from transformation 

matrix; that is d l is equal to T times d. 
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So, nodal solution in the local coordinate system because, we require when we are 

calculating axial force shear force and bending moment, we require local nodal values 

nodal values in the local coordinate system and once we get the local displacement 



vector or the displacement vector in the local coordinate system, we can apply the 

formula for axial force. 

Please note that they give the local degree of freedom in the axial direction for element 1 

is 0. Similarly, we can obtain for shear force substituting the values of d 2 d 2 d 5 d 6. 

This d 2 is going to be the local displacement in the transverse direction; d 3 is moment 

at node 1 and d 2 is transverse displacement at node 1 and d 5 is transverse displacement 

at node 2 and d 6 is rotation at node 2. 
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Substituting these values d 2 d 3 d 5 d 6, we get shear and bending moment is given by 

this using the transverse displacement values and rotations. Please note that when we are 

calculating either shear force or bending moment, we are not applying any fixed end 

solution correction because, element 1 is not subjected to any distributed load. 
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Substituting the numerical values, we get moment and we can calculate from this what is 

the bending moment value. Shear is constant whereas, bending moment is having linear 

variation. So, bending moment value at node 1 is obtained by substituting s is equal to 0; 

bending moment at node 2 is obtained by substituting s is equal to 1. 
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Similar calculations we can repeat for element 2. Only thing is we need to take 

corresponding degrees of freedom for element 2. The nodal values at element ends and 

transformation matrix here is identity matrix. So local nodal values or nodal values in the 

local coordinate system will be same as nodal values in the global coordinate system. 

Using these nodal values, we can calculate axial force and please note that element 2 is 

subjected to uniformly distributed loads. So, we need to apply fixed end correction for 

element 2 for shear and bending moment. 
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So, the first part of this calculation is coming directly from the nodal values and finite 

element interpolation and the second term is fixed end solution correction and 

substituting the numerical values we are going to get shear which is linearly varying. 

Shear force at node 2 is given by substituting s is equal to 0. Shear force at node 3 is 

obtained by substituting s is equal to 1 in this, so shear force at the ends. 
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Now, bending moment again, the first term is coming from finite element interpolation 

and second term is coming from fixed end correction. Substituting the numerical values, 

we get bending moment expression in which we can substitute s is equal to 0 and s is 

equal to 1, to get the bending moment at node 2 and node 3, respectively. We can draw 

using these values; we can draw free body diagram of each of these elements and see 

whether each element is in equilibrium or not and these are the bending moments at the 

ends and this is the free body diagram of both elements. 

The forces at element ends are shown in the free body diagram and it can be easily noted 

that these forces are in equilibrium except that, small round of errors may be there 

because of missing some significant digits and you can see each element in itself is in 

equilibrium; hence, this structure is equilibrium. 


