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Good morning. We are on to lecture number 6 in the first module, in this course on 

Advanced Structural Analysis. We are reviewing the basic structural analysis, part 1. 



(Refer Slide Time: 00:23) 

 

We are at the concluding section of this part, where we are reviewing work and energy 

methods. In fact, work method we finished; energy methods we had started in the last 

session.  

(Refer Slide Time: 00:33) 

 

We are referring to this book on Structural Analysis and this portion is covered in part III 

of that book. 

 



If you recall, we ended the last session with the theorem, a popular theorem in energy 

methods, which says - the external work on a structure is equal to the internal strain 

energy. The use of that theorem is limited to finding unknown displacements. Why is it 

limited? It is not versatile. What is their limitation in the use of that theorem? In all 

energy methods, there should be a cause effect. That is implicit in most of the energy 

methods. The limitation is that you can find a displacement only under a load location; 

there must be only one load. You understand? We will demonstrate that with this 

problem, looking at shear deformation. 

(Refer Slide Time: 01:49) 

 

Let us look at this cantilever beam, subjected to a concentrated load P at the free end B, 

and let that deflection beam DB. What is the answer for DB?  

P L cube by 3Ei.  

You can prove it by conjugate beam. P L cube by 3Ei, but that is not a complete answer. 

Why not?  

[Noise](Refer Slide Time: 02:17) 

Because it does not include shear deformation. So, we will see closely at how the shear 

deformation effects? 
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We can see that the shear force diagram, shows a constant shear force P and the bending 

moment diagram. In this case, it is a sagging bending moment diagram, linearly varying. 

If you want to find the strain energy in this system, it is easy. You can use that formula, 

but now we will include shear strain energy as well.  

So, if you look carefully at this part, where we multiply the bending moment diagram by 

itself, it is the part that comes from flexural strain energy. This part (Refer Slide Time: 

03:07) is the part that comes from shear strain energy. So, the total energy would be 

given by this expression, where you have both flexural rigidity and shear rigidity – GA 

dash; this we can equate to what? This is strain energy in the system. Total external work 

- the real work, which is equal to?  

[Noise] (Refer Slide Time: 03:35) 

No.  

P times by DB is virtual work. What is the full expression for real work?  

Half P DB. Because there is a cause effect relationship, we assume gradual loading and 

linear elastic behavior. This is how we invoke the theorem of…, the theorem which says 

- the external work is equal to the strain energy. Mind you, if in that cantilever beam, I 

put a uniformly distributed load, I would not be able to find the deflection using this 

theorem because then there will many displacements. 
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Look at this: you will find that, the deflection now is PL cube by 3EI plus an additional 

factor PL by GA dash which reflects the deflection that comes from shear. 

An interesting point to note here is - you find that the deflection that comes from flexure 

varies with the cube of the length, whereas is the deflection that comes from shear is 

linearly dependent. This is because the shear force is constant and the bending moment 

varies linearly. 

(Refer Slide Time: 05:05) 

 



Let us try to see what is the relative contribution of shear deflection? We can take the 

ratio of deflection due to shear divided by total deflection and you can get this 

expression, which can be written in this form - DB shear by DB is equal to this. 

Let us define a parameter C, which is L square by 3 into G by E. G by E is a ratio that 

depends on Poisson's Ratio and A dash by I.  

 (Refer Slide Time: 05:41) 

 

Now let us take a simple example of a rectangular section. For a rectangular section of 

material like steel, where Poisson's Ratio is 0.3 - that expression for C will reduce to 

something like 1.282 into L by D, the whole square. So, you will find that L by D span to 

overall depth ratio actually dictates the contribution of shear deformations to the overall 

deflection, to the overall energy. 

 (Refer Slide Time: 06:25) 



 

If you want to look at some practical examples: if the span by depth ratio is high, as it 

normally is, which is what makes the beam a skeletal element, line element, you will find 

that the ratio of shear deflection to total deflection is low; negligibly low; 0.0035 is very 

low; it is 0.35 percent. If the span by depth ratio is 10, it is double that - 0.7 percent; if it 

is 5, which is an intermediate beam, it is 3 percent. If it is 2.5, it is 11.1 percent. But if it 

is 1, which is the span is equal to depth, it is as high as 43.82 percent. 

This is the reason, when you deal with short squat shear walls, you really have to include 

the shear’s difference. But, if you have tall slender shear walls, then, you can treat it as a 

flexural element. For normal beams, you can ignore shear deformations and you would 

not have an error more than 1 percent, but for deep beams, you can have very high 

errors. 

We now come to energy methods proper. 
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There is a term invoked in energy methods called Load Potential Energy. That is a 

concept which you need to understand. It is given here that, the external work done by 

the force of gravity uses a potential energy, called gravitational potential energy, which 

is path-independent and has nothing to do with the elastic behavior of structures. Every 

body subjected to the force of gravity has the potential to do work - that is gravitational 

potential energy.  

We can extend this concept to all kinds of external forces acting on a structure, not 

necessarily due to gravity. So, we can talk of load potential energy. Work is done when 

these forces undergo displacements, in which process their potential gets used up. For 

this reason, because the energy gets used up, we associate a negative sign with this kind 

of work product. It is nothing but the external work product with the negative sign. So, 

the definition is very clear. 

Load potential energy: that means we are converting the work done by the external 

forces, but it is not a real work. If it were to be real work, you would attach a constant 

like half. This is a virtual work and we give it a negative sign and label load potential 

energy. 

Now, if you have a system, a structure, where you have external forces and you have 

internal energy. You can add up all the energy, sum it up and call it total potential 

energy, defined as Pi, Capital letter Pi equal to capital U plus capital V. U is internal 



energy, strain energy, which is always recoverable and V is load potential energy. Mind 

you, U is always positive; U can never be negative. And V is negative. Do not we 

actually talk about the changes in capital Pi? Whether it changes or not, we will see in 

the next slide.  

(Refer Slide Time: 10:10) 

 

We can also define a complementary total potential energy, where we put a star - an 

asterisk. So, Pi star will be U star plus V. If you are dealing with the linear elastic 

system, U will be equal to U star and Pi will be equal to Pi star. 

(Refer Slide Time: 10:32) 

 



Now, we have two broad sets of theorems: one - related to total potential energy and 

another - related to complementary total potential energy. In the same way, as using the 

principle of virtual work, you have two broad principles: principle of virtual 

displacements and principle of virtual forces. So, you find that there is a strong 

correlation between these principles. 

(Refer Slide Time: 11:05) 

 

The principle of virtual displacements is linked to the principle of stationary total 

potential energy. We will come to this in a moment. 

These sets of relationships where we look at the displacement field are called energy 

methods based on the displacement field. We imagine that displacement field is modified 

ever so slightly. You give a perturbation to the displacement field and then you see what 

happens. You will get another set of principles when you disturb the force field without 

disturbing the equilibrium in that field; those principles are related to complementary 

potential energy. You have a one is to one relationship with the principle of virtual 

forces. 

This is a kind of a big map, an integral map, where you see all the energy methods. We 

will take a quick overview of these principles. 



(Refer Slide Time: 12:06) 

 

 We will first look at the displacement based energy methods. So, let us take, for 

example, a truss. To generalize, let us assume that all the elements are elastic, but not 

necessarily linearly elastic. So, if the elements exhibit non-linear elastic material 

behavior, then the loads, the deflections that happen at the joint locations are called 

external component of force field and displacement field, will also show corresponding 

non-linear behavior. 

Let us take any coordinate j in the truss. It could be a vertical coordinate or horizontal 

coordinate. Let us just see how that relationship between Fj and Dj changes, as you 

increase the loads from 0 to the maximum value. 

Let us say that, at some point, it is stabilized and you have equilibrium and we imagine 

that we give a small perturbation to the displacement field, still maintaining 

compatibility. Let us say, we change D1 by a very small quantity, say, 0.1 percent; either 

positive or negative. Similarly, D2 I do by some other percentage, D3 and so on. So, I do 

this in my mind; it is all imaginary. We are going to invoke variational principles to 

prove this theorem. So, you will see - if you look at the j th coordinate, if I give a small 

perturbation delta Dj, then there is a small change in the load potential energy. Because 

Fj is not changing, you are not disturbing the loads. So, you will find that the external 

work or virtual work as Fj delta Dj and you will give it a negative sign as it becomes the 

increment of the variation in the load potential energy. 



Now, if you sum up this over all the joint locations, you get the total load potential 

energy variation. Is it clear? And this must be equal to the corresponding change - 

internal virtual work.  

(Refer Slide Time: 15:15) 

 

The principle of virtual work says sigma Fj delta Dj must be equal to sigma Ni delta ei, 

where Ni ei graph - the non-linear picture, may look like this and that incremental strain 

energy is delta Ui. First, we look at the principle of virtual work. It says sigma Fj delta 

Dj is equal to sigma Ni delta ei.  

Now, we bring in the concept of load potential energy. We see the term on the left hand 

side is minus delta V and the term on the right side is delta U. When you bring them both 

on the same side, you get delta V plus U, which we have defined as delta pi. 

What do you conclude from this small proof? You get a theorem. What does the theorem 

say?  

[Noise] (Refer Slide Time: 15:41) 

It is a statement of equilibrium.  
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The Principle of Stationary Total Potential Energy (PSTPE) states that when the 

displacement field in a loaded elastic structure is given a small and arbitrary 

perturbation, maintaining compatibility and without disturbing the associated force field, 

then the first variation delta pi, first variation of the total potential energy is equal to 0, if 

the forces are in a state of static equilibrium.  

This reminds you of which work principle? Goes back - to Bernoulli. This was his idea 

of principle of virtual work, more correctly called, the principle of virtual displacements.  

It is a same thing expected in an energy form. It basically establishes equilibrium in the 

force field and you can find an unknown force component in that force field. 
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Now, the alternative form of the same principle is more popular. Let us say, you have 

some independent displacement parameters, I will give an example, which usually is 

equal to the degree of freedom in that system. Let us call them D1, D2, D3, etc. Then you 

can also write Pi. You can always write U and V in terms of these independent 

displacements. You can write an expression, delta Pi as a function of delta D1, delta D2, 

etcetera equal to 0. If they are really independent, then you can invoke this chain rule.  

Chain rule says that delta Pi can be written as delta Pi by delta D1 into delta D1, plus this, 

plus that (Refer Slide Time: 17:56) equal to 0. What does the chain rule say? If this 

condition satisfies, each one of these terms should be equal to 0 because delta D1, 

etcetera are independent and arbitrary. If you do that, that one equation multiplies into 

large number of equations, as many as there are degrees of freedom and you shift from 

variational calculus formulation to a differential partial differential equation. So, dou Pi 

by dou Dj is equal to 0, for j equal to 1 to n. So, this is a better form for engineers to 

work with. 
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In this form, that same theorem says that when Pi is expressed as a function of 

independent displacements D1, D2, etcetera in a compatible displacement field, it must 

be rendered stationary, with the partial derivative of Pi with respect to every Dj being 

equal to 0. This happens if the associated force field is to be in a state of static 

equilibrium. 

Now, the word stationary in calculus refers to a point of inflection. It could also be a 

maximum point or it could also be a minimum point of the function, for which you are 

taking the partial derivative. It can be proved, if you have a linear elastic stable structure, 

then, the stationary point refers to a point of minimum energy. So, in that form, it is more 

popularly known as the Principle of Minimum Total Potential Energy. It is PMTPE. 
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Let us demonstrate how you do this. Take that same cantilever beam problem. Let us 

derive an expression for bending moment, not using the conventional direct equilibrium, 

but we go the long winded way through energy formulation, assuming a displacement 

profile and figuring out what could be an expression for bending moment. 

Now, let us read as exactly as possible. We know very well that the deflection function 

should be a cubic function. Why should be it a cubic function?  

[Noise] (Refer Slide Time: 20:28) 

It is because you are dealing with a concentrated load and hence linearly varying bending 

moment, and if the bending moment varies linearly, curvature varies linearly, whereby 

the slope will vary quadratically and the deflection would vary cubically.  

Let us take a polynomial cubic equation: C0 plus C1 x plus C2 x square plus C3 x cube. 

If we invoke the boundary condition, you have kinematic boundary conditions at x equal 

to 0; the deflection and slope are zero. And that equation will simplify to this equation 

(Refer Slide Time: 21:12), which is clean cubic equation having two components: one - 

involving a square term and other - involving cube term at consonants D1 and D2, which 

are now the independent parameters, we were looking for. So, we can say, the deflection 

at the free end is D1 plus D2, because when you put x equal to L, that equation 

degenerates to this one. 
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You can also derive an expression for curvature by taking the second derivative of delta 

x. Using this expression for curvature, you can get an expression for strain energy.  

We have done this earlier; so, I am not going in depth. You have second derivative, 

which is assumed to be equal to the curvature. From curvature, you can get strain energy. 

When you integrate this, I am going fast over this, you get that expression. 

You look at the total potential energy, which is V equal to minus PDB. You substitute DB 

as D1 plus D2.  

(Refer Slide Time: 22:31) 

 



In the next step, you can invoke the principle of minimum potential energy and take the 

two equations -- dou Pi by dou D1 equal to 0 and dou Pi by dou D2 equal to 0. You can 

solve them simultaneously and get exact values of D1 and D2. You get back the 

expression that we had derived earlier for deflection, including…of course, there we had 

shear deformations, but without shear deformations, you get L cube by 3EI. 

Once you have the expression for delta x, because If you look here, in this expression, D1 

and D2 are unknown. Once we invoke this theorem, we get the values of D1 and D2. If 

you plug-in these values into that equation, you will get the exact equation for the 

deflection function. You know that, from this you can get the curvature and from the 

curvature by multiplying with EI you can get the bending moment. That bending 

moment equation, P into L minus x is 100 percent correct. You know that. You can 

check it through equilibrium. 
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This is an alternative way of establishing equilibrium. Not particularly useful in this 

example, which you could have solved more easily using direct equilibrium. 

Another common example is to find, assume a deflection shape which satisfies 

compatibility to some extent. Take a simply supported beam, assume a series function, 

which satisfies compatibility, let us say, a sin-o-swaddle series. Let the mid span 

deflection be D. So, D can be expressed as a function of many independent other 



functions, D1, D2, D3, etcetera and the definition of stiffness would be K equal to P by 

D, where P is the concentrated load acting at the midspan. 

If you repeat this exercise - find the curvature, find the strain energy, write the 

expression of total potential energy and if you take one term, for example, assume that 

the higher order terms are not important, you invoke this principle and get an expression 

for deflection, and thereby for stiffness, which is quite close to the exact expression. 

What is the exact expression? 48EI by L cube. You got a reasonable good expression. 

These are ways of using this principle. 
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The more popular use of this is Castigliano's Theorem, which can be derived from this 

principle. So, Pi can be written as U plus V. V is written as minus sigma Fj Dj. When 

you invoke the principle of minimum total potential energy, you will find that this will 

reduce to dou U by dou Dj, which is equal to Fj. In this form, it is known as Castigliano’s 

Theorem - Part I. It is similar to a principle of virtual displacement. 

This theorem states that strain energy U in an elastic structure, mind you, we are not 

saying it should be linearly elastic, subjected to a system of external forces in static 

equilibrium, can be expressed as a function of independent displacements D1 to Dn, 

satisfying compatibility, then the partial derivative of U with respect to every Dj will be 

equal to the value of the conjugate force Fj. 



It is actually same as the earlier principle, expressed in another form. You can use this to 

actually derive stiffness coefficient. You can prove that Kij is the second mixed partial 

derivative of the strain energy with respect to Di and Dj. This proof follows from… So, 

you get from Castigliano’s theorem, which starts with this expression - dou U by dou Dj 

is equal to Fj. You can derive an expression for Kij, which is dou square U by doi Di dou 

Dj. 
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Let us demonstrate this with a simple example. Here are two bar truss. It has two degrees 

of freedom. Joint D can move horizontally, it can also move vertically, and the 

elongations e1 and e2 can be expressed in terms of D1 and D2. We can easily prove this. 

e1 is equal to D2 and e2 is equal to D2 cos 30 degree. 

The first diagram is what you do when you allow only D1 to occur and D2 is restrained. 

The second shape is when you allow D2 to occur with D1 is restrained. You can work out 

the relationship between bar elongations and the deflections. You can write them in a 

form: e1 and e2 are related to D1 and D2 in that form. So, if someone gives D1 and D2, 

you get e1 and e2. 

You can write an expression for strain energy. How do you write the strain energy 

expression? What is the strain energy for a spring element? Half K into elongations 

square. You have elongations here. Let us say, both elements have the same stiffness K0. 

Half K0 into e1 square, plus half K0 into e2 square. e1 is equal to D1 plus root 3 by 2D2 



and e2 is equal to minus half D2. You plug in those values, you can write an expression 

for U, in terms of D1 and D2. I am going fast. You can verify this. 
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Now, if you take partial derivative of D1 and D2, you will get two expressions. If you go 

to the fundamental definition of stiffness matrix, stiffness coefficient kij dou square dou 

D1 dou D2, you can derive values of K11, K22, etcetera in this manner. This is a hard way 

of doing it. We will be studying matrix methods, where you do not need to do all this. 

You can generate it automatically, but this is the original background to the derivation. 

(Refer Slide Time: 29:28) 

 



You can also use it to find unknown bar forces.  

(Refer Slide Time: 29:42) 

 

For manual use, usually, we would find unknown forces directly. You would not be 

using Castigliano’s first Theorem, because it is more difficult. The real use of these 

theorems, is to find unknown displacements, for which you need to shift.  
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From this set of theorems, you have noticed that we finished the use of displacement 

based theorems. You can use it to set up equilibrium equations dou Pi by dou Dj equal to 

0. You can use it to find unknown forces at Castigliano’s first theorem dou U by dou Dj 



equal to Fj. You can also use it to find stiffness coefficient Kij. These are powerful uses, 

at least theory-wise you should be familiar with these terms. 
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We look at the force field, which is related to the principle of virtual forces. You have 

corresponding principles: corresponding to delta Pi equal to 0, you have delta Pi star 

equal to 0. So, you would call that theorem - the principle of stationary total 

complementary potential energy.  

You see a parallel. You use this to find some unknown displacements in that 

displacement field. So, instead of setting of equilibrium equations, you now set up 

compatibility equation. Instead of finding unknown forces, you find unknown 

displacements. Instead of finding stiffness coefficient, you find flexibility coefficient.  

You are doing a similar exercise and you will see a beautiful symmetry in these 

relationships. You can do the same thing using work methods, without getting into 

energy and that would be a use of the principle of virtual forces.  

Can you see this map? With practice, you will be familiar with these different 

approaches. 
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Now, I will go fast. You are familiar with the way of deriving this theorem. Here, you go 

back to the truss and instead of disturbing the displacement field, you disturb the force 

field. You increment those forces positively or negatively by a very small component 

and invoke the principle of virtual work. You will find delta V plus delta U star, which is 

delta Pi star, is equal to 0. You can prove this in the same way. There is no need to 

explain it further. So, you have the external incremental change in work and the change 

in strain energy. 
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The principle in this form states that when the force field in a loaded elastic structure is 

given a small and arbitrary perturbation, maintaining equilibrium and without disturbing 

the associated displacement field, then the first variation of the total complementary 

potential energy is equal to 0, if the displacements satisfy compatibility. 

If you write this equation side by side with the earlier equation, which is a principle of 

stationary total potential energy, you will find many similarities and differences. The 

format is same, but there you are disturbing the displacement field; here, you are 

disturbing the force field. When you are disturbing the displacement field there, you are 

not changing the forces. When you are disturbing the force field here, you are not 

changing the displacement. That is important to note.  

It is something you do in your mind. It is arbitrary and a very small value. The cause that 

you refer to here is perturbation and the effect is variation. Those are the terms used. 

Now in the first one, when you disturb the displacement field, you are maintaining 

compatibility. Here, when you are disturbing the force field, you are maintaining 

equilibrium. When you find the first variation delta Pi here, delta Pi equal to 0 is a 

statement that establishes equilibrium in the force field, although you disturb the 

displacement field. Whereas, here, delta Pi star equal to 0 is a statement of compatibility 

which you get, although you disturb the force field. So, there is symmetry in these 

relationships 
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Expression of compatibility - you can go through the same procedure and can find the 

alternative form, which reduces to dou Pi star by dou Fj equal to 0. Earlier, it was dou Pi 

by dou Dj equal to 0. That one equation, that is, the first variation of Pi star equal to 0, 

now multiplies into n number of equations, depending on the number of independent 

forces that you get.  

So in this alternative form, it states that the total complementary potential energy Pi star 

in a loaded elastic structure, expressed as the function of n independent forces F1 to Fn in 

a statically admissible force field. That is, force field, which satisfies the equilibrium 

must be rendered stationary, with the partial derivative of Pi star with respective to every 

Fj being equal to 0, if the associated displacement field is to satisfy compatibility. 

Here again, if you are dealing with stable linear elastic structure, the condition of 

stationarity reduces to a condition of minimal value of the function, which is Pi star. 

In this form, it is called PMTCPE, that is, Principle of Minimum Total Complementary 

Potential Energy. Mouthful of words, but it is a concept that you need to remember. 
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Let us have a look at one simple demonstration. Let us take a cantilever beam, but this 

time, it is different. You have many loads acting. You have one load. Let us take load P 

and you want to find the slope and deflection at some arbitrary location x.  



In this theorem, if you want to find D1 and D2, D1 is the slope at x and D2 is the 

deflection at x. You have to introduce imaginary corresponding conjugate forces, F1 and 

F2. Later, put them equal to 0, because that is how you generate the equation. You are 

familiar with Castigliano’s Theorem. So, write down the bending moment expression. 

You can separate out the real one caused by P, which is a straight line, and the one 

caused by imaginary F1 and F2, which is also a straight line but not starting. It is exactly 

as shown. You can write down the value. 

At any location, zi has two forms. You have to break it up into two parts: one up to x, 

and one beyond x. Beyond x, you will find that F1 and F2 do not have a role to play 

because there is no bending moment cause by F1 and F2. So, you have got this 

expression for bending moment at any location zi.  
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You can expand this by ignoring shear deformation. Write an expression for U star can 

be generated easily. This is U star -- the full form of U star. This U star is a function of 

not only p, but F1 and F2. 

Now, invoke the theorem, load potential energy Pi star. What is V? V is minus P into the 

total deflection under the load plus the deflections caused by the imaginary F1 and F2.  
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You will get that expression and invoke the theorem - dou Pi star by dou F1 equal to 0. 

When you invoke this expression and take the final form, you should insert the values of 

F1 and F2 equal to 0. Similarly, take the second equation - dou Pi star by dou F2 equal to 

0. You get the values of D1 and D2. You get the slope and deflection using this energy 

formulation.  
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You can do the same thing using Castigliano’s Theorem, part II. Here again, you can 

prove using a similar procedure, dou U star by dou Fj equal to Dj, for 1 to n. Here, you 



can take advantage of the fact that U is equal to U star for linear elastic behavior, and for 

beams, you get that expression. Can you say something about these expressions? Have 

you encountered these expressions earlier, in a different form? For beams, it takes this 

form.  

[Noise] (Refer Slide Time: 39:08) 

If you recall the unit load method which is the principle of virtual forces, there also we 

have 1 into Dj equal to these quantities. This is the internal work. Now, the similarity is 

everything is same, except this expression, that is, “What is dM by dFj? It is a small mj 

that we refer to that. It is the bending moment caused by Fj equal to 1. So, if you look at 

it carefully, they are all the same. There are only different ways of approaching the same 

problem. We are doing the same kind of integration. You can do area multiplication, 

whether it is a beam or a truss. 

In summary, this theorem, in its part II says, if the complementary strain energy used, in 

an elastic structure with the given kinematically admissible displacement field, is 

expressed, the function of n independent external forces F1 to F n, satisfying equilibrium, 

then the partial derivative of U star, with respective to every Fj, will be equal to the value 

of conjugate displacement Dj. If the behavior is linear elastic, U star can be replaced by 

the strain energy function u. 

Again, you can expand D in terms of flexibility coefficients. Like in the earlier case, you 

can use energy methods to get an expression for flexibility coefficient. Fij is a mixed 

partial derivative of U star, with respect to Fi and Fj. The similarity is now complete with 

stiffness coefficient.  

There is a special application of this theorem. It is known as theorem of least work to 

solve statically indeterminate structures. Let us say, you have a continuous beam and you 

want to choose the redundant reactions as your redundants. So, x1 to xj dou U star to dou 

xj actually denotes what? By Castigliano’s Theorem, it denotes that displacements at 

those support locations. Those supports do not move; so, the displacements are zero. You 

can also interpret this as the minimization of strain energy. We will discuss it shortly.  
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That is called the theorem of least work. Let us demonstrate this with a problem. You 

remember we did this problem, finding D1 and D2 using unit load method. Here, let us 

make it more complex by including actual deformation and shear deformations. I will go 

through it fast. You can find it using Castigliano’s Theorem.  
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First, find the deflections due to bending. You have a bending moment diagram. To find 

D1, you apply F1 equal to 1. You will get the unit load bending moment diagram m1. To 



find D2, you find m2. These are nothing but dou U dou capital M divided by dou F1 and 

dou F2. 
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You can work out the same method. It resembles a unit load method and you can find 

that the deflection caused by bending is 5.61 at point one and if you want at D2, it is 

something. You can also find deflection caused by shear using these similar expressions.  
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At the end of day, we are interested in total values. You will find that, the total deflection 

D1 and D2 is 5.64 and 9.34 mm downward and to the right. Those additional terms that 



we have cut here are terms at come from shear and axial; they are actually negligible. 

This is again another proof why we can ignore shear deformation and actual 

deformations in normal frames which are well proportion. 

Earlier, we have said that the energy caused by shear and energy caused by actual forces, 

is negligible. Now we are saying it is not just the energy, but also the deflection. So, do 

not bother; make your life easier. When you see a frame, worry only about bending- 

flexural strain energy. When you see a beam, do that unless the beam is deep. When you 

see a truss, only action strain energy.  
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You can use it to find truss deflections. Same method but little complicated. You have 

many members here. You are given the areas of cross section of each member, given 

model of the velocity, you can use Castigliano’s Theorem to invoke the deflection. There 

are many points of your interest.  
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First you need the actual flexibilities of all the members. Then invoke this equation and 

we can prove this. These are exercises that you need to do. We are just reviewing 

something that you already learnt.  
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You can do it in neat tabular format and get the answers.  
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You can also find the flexibility coefficients, just the way we found the stiffness 

coefficients. It is similar, once you get the hang of it. Earlier what did we do? We wrote a 

relationship between e1 e2 and D1 D2. Now, we write a relationship using equilibrium 

between N1 N2 and F1 F2. We will study in matrix methods that this coefficient matrix 

you get here is actually the transpose of the other matrix, which we got in displacement 

method. We will give a formal proof later.  

Now you write an expression for complementary strain energy. You must remember that 

Castigliano’s Theorem simplified everything because it got rid of load potential energy 

and it got rid of total potential energy. So, you will have only strain energy and 

complementary strain energy. Many students studying the structure analysis remember 

only that; it is good to remember the background, which includes load potential energy 

terms.  
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So, you can invoke it in this example. Exactly similar operation and you can find an 

expression for flexibility matrix. If you go back to the same problem we did earlier, you 

will find that. This matrix is related to K matrix. How? One is the inverse of the other. 

You can prove it. 
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We will end with this theorem of least work, which I have already explained. For a 

statically indeterminate structure, dou U star by dou Xj is equal to Dj. In general, when 

support movements are involved, Dj is zero. This is even true for internal indeterminacy. 



You can give this an interpretation. When you say dou U star by dou Xj is equal to 0, 

you can do it as a minimization of complementary strain energy. 

So, the expression goes this way - The theorem of least work states that, of all the 

possible values that the redundants in a statically indeterminate and linearly elastic 

structure can assume, the true solutions, ensuring compatibility in the displacements 

field, correspond to the conditions of minimum complementary strain energy U star, or, 

because it is linear elastic, you can say, minimum strain energy U because both these 

terms are equal. Simple demonstration which I asked you in earlier class. 
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Let us say you want to solve this problem. The support reaction in the middle is treated 

as the unknown x. You remember I said every student in this class can give his own 

value of x. You can compute strain energy and if you actually compute strain energy, 

which means you have to integrate the bending moment diagram, take the square of it, 

and so on. You will find that, for any value of x, you can get complementary strain 

energy. You can even assume foolish values of x, which go negative. You know it is not 

going to be negative. You will find that if you plot x, every value of x will give you 

another reaction which is statically admissible. You will find that you will get some 

strain energy, but the strain energy value will be high. The exact solution - the correct 

solution is one for which the strain energy is minimum. 



You can prove this. You can write an expression for M, bending moment at any location. 

Write an expression for U star and take the derivative. And you can prove that there are 

series of steps with which you can get the final answer. 

So, with this, we have completed review of structural analysis I. In the next sessions, we 

will cover part-II, in which, first half will cover force methods, including theorem of 

least work, and the second half will cover displacement methods, which you have not yet 

studied.  

Thank you. 


