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Good morning. We are now on to lecture number 5 on advanced structural analysis. We 

are still with the topic of basic structural analysis; we are doing a review. 

(Refer Slide Time: 00:27) 

 



 

We had completed statically determinate structures. We had also looked at the work 

methods in the last class. We need to complete that portion and then we will do a review 

of energy methods in this session. 

(Refer Slide Time: 00:45) 

 

As you know, we are referring to this book on structural analysis and right now we are 

on to part III. The focus is on finding displacements in statically determinate structures, 

but we are also covering related areas. When you talk about work and energy methods, 

you can actually find the force response as well.  



(Refer Slide Time: 01:11) 

 

We ended the last class by discussing that there are three important theorems based on 

the principle of virtual work. Historically, these are very important theorems in the 

development of structural analysis. The Maxwell that we refer to here is the famous 

James Clark Maxwell who made many contributions to physics.  

The reciprocal theorems, first contributed by Maxwell and later improved upon and 

generalized by Betti of Italy, actually gave the first major breakthrough in the analysis of 

statically indeterminate structures; they are beautiful theorems. The important point to 

note is that these theorems are applicable only for linear elastic structures. Unlike the 

principle of virtual work which requires you to compute both external virtual work and 

internal virtual work, here we skip the calculation of internal virtual work altogether.  
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Maxwell's Reciprocal Theorem in its modern form basically establishes that the 

flexibility matrix is always symmetric. In the language of flexibility matrices and 

coordinates, let us take any structure linearly elastic. Let us look at that cantilever frame 

and we mark two coordinates. Deliberately, we have taken two different types of degrees 

of freedom. What is indicated as i is a translation and j is a rotation. The conjugate forces 

would be a direct action force at i and fj would be a moment.  

Now, the flexibility matrix in this case would be a two-by-two matrix and you can write 

it like that. The four flexibility coefficients are fii, fij, fji and fjj. The physical meaning of 

these quantities are… You can see that if I want to get the first column in this flexibility 

matrix, then I have to apply a unit load Fi equal to 1. Physically, that would be given by 

this picture (Refer Slide Time: 03:55). I apply a unit load at i and the deflection that I get 

at the coordinate i is referred to as fii and the rotation that I get at the coordinate B is 

referred to as fji. This follows from our discussion yesterday.  

Similarly, if I want to get the second column in this flexibility matrix, I apply fj equal to 

1, which is actually a moment. The rotation I get at the location where I apply the 

moment is called fjj and the deflection at this i location is fij. You would recall that fij is 

written in such a way that the indices i will refer to the effect location and j will refer to 

the cause location. So, following that format, it can be proved, and this is Maxwell's 



reciprocal theorem, that fij is equal to fji. It is interesting because the units of fij and fji 

are completely different in this case. 

If you look carefully, fji refers to a rotation; so, the units would be radians, but caused by 

a unit force and so radians per Newton in this case, whereas fij refers to a deflection 

caused by a unit moment; so, it is millimeter per newton millimeter. That is the essential 

difference, but both reduce to a dimensionless quantity divided by the force unit of 

Newton. Now, the proof in this case is very elementary; you can prove it using the 

principle of virtual work.  

In the first instance, let us compute or let us establish the principle of virtual work 

looking at the force field in system I that is caused by fi and the displacement field in 

system II that is caused by fj. Then, do you agree that the external virtual work would be 

fi into fij? This is force and this is displacement (Refer Slide Time: 06:36). The internal 

work is… You know the units; mi refers to the bending moment anywhere in that frame 

caused by fi equal to 1 – that is the force field; the other one is the elemental rotation mj 

into dx by EI.  

Now, we know this is true. It is true whether you have elastic behavior or not, in general; 

but to get the curvatures, we are using elastic behavior; that is why EI comes in the 

denominator, but we can also write another expression for the principle of virtual work, 

looking this time at the force field caused by fj and the displacement field caused by fi. If 

we were to do that, then you would write it in this manner; it is easy to understand. 

Now, if you look carefully at these two equations, you will find that the quantity on the 

right-hand side, which is integral mi into mj into dx by EI is the same. There is a 

commutation between mi and mj, but it is the same quantity. Therefore, it follows that 

the quantity on the left-hand sides of the two expressions should be the same. Since you 

are applying a unit load fi equal to fj equal to 1, it follows that fij is equal to fji. This is a 

simple elegant proof of establishing the symmetry of this matrix.  

Now, I can choose more than two coordinates. I can choose three coordinates; then, the 

size of the flexibility matrix would be 3 by 3, but it would still be symmetric in the sense 

f13 would be equal to f31 and f23 would be equal to f32 and so on. In summary, in a linear 

elastic structure, displacement fij at coordinate i due to a unit force or unit load acting at 

coordinate j is equal to the displacement fji at coordinate j due to a unit load acting at 



coordinate i. The load could be a force or it could be a moment. Although we have 

proved this for a frame, you could prove it for a truss as well; there, the force would be 

an axial force if it is an internal force. 

(Refer Slide Time: 09:00) 

 

Let us just demonstrate this with a simple example of a cantilever beam. Let us look at 

the two coordinates referring to the deflection and the rotation at the free end. If you 

were to derive the flexibility matrix, you could do that by first applying a load P at the 

free end and then applying a moment M0 again at the free end. You can use any method; 

you could even use the conjugate beam method to work out the deflection and the slopes; 

those values are very easy to calculate. The deflection caused by the load P is P into L 

cubed by 3 EI, the rotation is P into L square by 2 EI, the deflection due to the moment is 

M0 into L square by 2 EI and the slope is M0 into L by EI.  

If you were to write these expressions in a matrix form, this is how you would write it. 

You will notice that you can separate out P and M0 into the load vector and the 

coefficient matrix turns out to be a property of the structure, independent of the loading. 

You can put in any value of M and M0 and still that flexibility matrix has not changed. 

So, it is a very useful property of the structure. It is very evident that the matrix is 

symmetric and that is the proof.  



(Refer Slide Time: 10:34)  

 

Betti moved further and gave a more generalized expression of the reciprocal theorem. It 

is reciprocal in the sense that the effects are reciprocal. Here, Betti talked about the entire 

system; so, you look at the force field in system I and the conjugate displacements. You 

look at both the force field and displacements, but you need to look only at the joint 

forces and displacements; do not worry about the internal forces and deformations.  

Let us see whether the same truss or the same structure but a completely independent 

force and displacement field. So, we will label this as system I, the top one, and the other 

one as system II. This is FjI and DjI (Refer Slide Time: 11:29); this is FjII and DjII. If you 

invoke the principle of virtual work, you can easily prove that if you multiply the joint 

forces in one system with the joint displacements in the other system, obviously there is 

no correlation between the two – there is no cause-effect relationship.  

We call it external virtual work but it is really virtual; you are just multiplying a force 

with displacement disconnected with that force but at the same location in a clone of the 

same truss. That product is equal to the summation of the forces that you would get if 

you were to multiply the forces in system II with the conjugate displacement in system I. 

This is really reciprocal not only in terms of displacements but also in term to forces and 

this can be easily proved. You will find that the Maxwell's Theorem is a special case of 

Betti's Theorem when you have only one load acting and if you make it a unit load, you 

get the relationship fij is equal to fji. 



Put together, the two reciprocal theorems are often referred to as the Maxwell–Betti 

Reciprocal Theorem. If you want a statement of the theorem, it would be the total 

external virtual work associated with forces FI in system I and the conjugate 

displacements DII in system II is equal to that associated with forces FII in system II and 

the conjugate displacements DI in system I in a linear elastic structure. The word 

conjugate has a special meaning; it comes from the word ‘conjugal’ which really refers 

to a marriage between a force and a displacement, but they really refer to the same 

coordinate location.  

(Refer Slide Time: 13:47)  

 

Let us now see a demonstration of Betti's Theorem: the first application of solving 

statically indeterminate structures. Here, you we have a two-span continuous beam and 

that it is externally indeterminate. You have two equations of equilibrium to solve three 

vertical reaction unknowns; so, let us assume one of them to be the redundant. Here, we 

have chosen the middle reaction VB as the redundant X. Now, we will call the first 

picture as system I and the second picture as system II.  

System II is virtual. In this system, we allow a movement of that support x and you will 

see that the deflected shape would be like that of a simply supported beam supported at 

A and C; let us say those actions are RA, RB and RC. We will refer to the deflection 

under the first load location as deltaP here and the deflection of the support settlement 



here is deltaX (Refer Slide Time: 14:46). You have got displacements and forces in 

system II and you also have displacements and forces in system I. 

We now invoke Betti's Theorem and you will find that the total external virtual work that 

you get when you multiply forces in your first system with the displacements in the 

second system is just P into deltaP. Do you agree? It is because none of the other external 

forces have any support movements that are non-zero. Your left-hand side of the 

equation is P into deltaP, but you also have X doing work; X does negative work because 

deltaX is in the opposite direction.  

We would say the total external work is P into deltaP minus X into deltaX. Now, you take 

the external virtual work caused by the forces in the second system with the 

displacement in the first system and you will find that that product is 0 because there are 

only three forces here RA, RB and RC, but they refer to supports in system I and none of 

the supports are moving. So, it is a beautiful equation.  

You end up discovering that the unknown X is nothing but P into deltaP by deltaX, which 

means if you take the ratio of this deflection (Refer Slide Time: 16:24) to this deflection 

and that ratio times P is the amount of force that you get in this reaction. That is a 

fraction of P that is passed on as a reaction in the middle support. Actually, in the early 

days, they did measurements to prove it; you can do this physically on a beam and 

measure the deflection and that is your reaction.  

So, it is a simple, initial way of understanding indeterminate structures. If you really had 

an exact solution to those deflections, and you can derive those by any of the methods 

that you know (including direct integration, conjugate beam method, virtual work 

method), if you have an expression for deltaX and if you plug in the value of X equal to l 

by 2, then you can actually get the exact solution which in this case turns out to be 11 by 

16 P. But even if you did not have the exact solution, you would get an approximate 

solution by just learning how to draw to the deflection diagram reasonably accurately 

and scaling them.  
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I just wanted to show you something of historical value. Today, we do not use those old 

methods because we have very powerful methods of finding unknown redundants. The 

Müller–Breslau's principle is a powerful principle and it is credited to both Müller of 

Germany and Breslau, I think of England, who more or less at the same time came up 

with a powerful principle which helps us draw influence line diagrams.  

As you know the influence line diagram is a diagram that is especially useful in finding a 

response quantity caused by the movement of unit load along the length of the beam. It is 

useful in bridge design; it is qualitatively useful in building designs as well. Here, I have 

a two-span continuous beam. I have positioned the unit load 1, which can occupy any 

position along the length of the beam; I wish to find, for example, the support reaction 

RA. What do I do?  

If I want to use Betti's Theorem, then in the second system I allow for a displacement 

where RA is acting, which I can achieve by actually removing that support and 

deliberately applying a force FA. You agree that we get a deflected shape roughly as 

shown in this figure. Now, if you invoke Betti's Theorem and you refer to this deflection 

(Refer Slide Time: 19:17) under the unit load 1 in the first system as deltaX, then you can 

show that this RA into deltaA minus 1 into deltaX (minus because the two are in opposite 

directions) must be equal to 0.  



So, it follows that RA is equal to deltaX by deltaA and that simple equation has a 

powerful meaning. It basically says that if you want the influence line for the vertical 

reaction in this two-span continuation beam, if you want be influence line for RA, all you 

need to do is to remove the restraint, remove that support and lift up the beam by a unit 

displacement; if you put deltaA equal to 1, then whatever deflected shape you get is the 

exact influence line diagram for the reaction. That is a very powerful principle.  

Even if you were not to put a unit displacement, you give it some arbitrary displacement, 

then the shape that you get represents the influence line diagram to some scale. If you 

normalize the deflection so that the deflection is unity, then you get the exact influence 

line diagram. This can be proved for any response function; it could be applied to 

bending moments, shear forces and so on. It is a very beautiful principle called the 

Müller–Breslau's principle.  

The statement would be the influence line for any force response function in any linear 

elastic structure is given by the deflected shape of the structure resulting from a unit 

displacement corresponding to the force under consideration. An interesting thing to 

note, and I want you to give me the answer for this, is that if the structure just rigid, if it 

is statically determinate, the influence lines are always straight lines. If they are 

indeterminate, as in this case, they are not straight; they get curved. Why is that so? 

It is a good point to reflect. Why is the influence line diagram for a continuous bridge 

made up of curved lines, but for a simply supported bridge they are all straight lines? 

Statically indeterminate structures ((.)) displacement which is equivalent ((.)). There will 

be a bending moment ((.)) in the deflected shape and so the influence line ((.)). That is 

one way of arguing it out but perhaps a more simple way is to go back to the realization 

that the force field is related to the displacement field. Structures are statically 

indeterminate because they are over-rigid and they are over-constrained – more than the 

minimum required. If you remove those additional constraints, you get back the just-

rigid structure. If you remove a constraint from a just-rigid structure, then it becomes a 

mechanism. Do you understand? 

If you take a simply supported beam and remove one support and you move the 

structure, then you have a rigid body; it behaves like a mechanism. Is it clear? But if you 

had a two-span continuous beam and you removed the support, it is still statically 



determinate, it still just rigid and it can still take load; that is the difference. Is it clear? 

So, your answer is also correct; that is another way of looking at it.  

(Refer Slide Time: 23:32) 

 

It is nice to qualitatively draw influence line diagrams; it is very easy. If you want the 

influence line for the support reaction of a propped cantilever, you just lift it up. You can 

just write the exact expression for y of x which is now possible because you have many 

techniques of doing that. Then, you actually have an equation for that influence line. I 

would like you to try drawing the shapes of the influence line diagrams qualitatively – 

just the shapes for RA, RB and RC; quickly. Just draw the shapes of the influence line 

diagrams. RA we have already drawn.  

Can you draw the influence line diagram shape for RB and RC? Just the shape. The value 

will be unity at some location. You draw it and you compare it with the answer that I am 

going to show you. This is one diagram. This is the diagram we did in the previous 

problem. This is for RA. Agreed? Why is the value negative in the sector BC? What does 

it mean? What is it mean to have a negative value? It is sagging. ((.)) The BC segment 

will be sagging. The beam segment in BC will be sagging. So, what does it mean for RA? 

((.)) 

There is an uplift; you can visualize that the beam wants to lift up. You said the wrong 

thing – it is not sagging in BC that will cause the reaction, but it is the hogging in AB 

that wants the beam to lift off from the support A. So, you need to pull it down and that 



is why you have a negative reaction. Is it clear? Try drawing for RB. Will you have 

anything negative? No, because you just lift it up; so RB is very straightforward. What 

about RC? Similar to RA. It is quite easy. If you want the exact equations, so you have 

techniques of doing that.  

(Refer Slide Time: 26:19)  

 

The exact equation, for example, is something you can generate. There are handbooks 

available where they do not give you the exact equations; they are useful in bridge design 

where you get the ordinates at different locations, you divide the span into ten segments 

and you get those locations ((.)) sometimes used in practice.  
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Look at this beam. It is called the balanced cantilever beam. I think we looked at it last 

year. Will you get curves or will you get straight lines, if you were to draw? In this case, 

you get straight lines, but you can still use the Müller–Breslau's principle. I have marked 

here locations G, H and J. Can you try drawing the influence lines for the bending 

moments at let us begin with J, then G and then H?  

What you need to do is to… To find the influence line for MJ, what should you do? You 

put an internal hinge there and move it either up or down. If you move it up, then you 

will get positive values which is what you should get for sagging moments. You should 

follow a sign convention. You can also try drawing and getting the support reaction at A 

and B. Can you try that? The influence line for support reaction at A and B and so on? It 

is very easy; you remove the reaction at A and you lift it up. How will this move? We 

have done this earlier. You get a series of lines; they are very easy to do; they are all 

straight lines. Once you catch one value, you can catch the rest of it. We have done this 

earlier.  
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I would like you to recall what you we did. With this, we wrap up work virtual work and 

work theorems and we go straightaway to the next topic which is energy methods.  

(Refer Slide Time: 28:34) 

 

Specifically, we look at energy methods that help us solve problems of finding unknown 

forces that need to satisfy equilibrium and also energy methods that will help us find out 

unknown displacements. Mostly, we will be using Castigliano's Theorems I and II which 

you have heard of, but it is good to know the origin of these theorems. They come from 

the principle of stationary total potential energy and the principle of stationary total 



complementary potential energy. They have very wide applications. Energy methods are 

not usually very well understood by students; it takes time to really understand.  
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Let us do a quick overview. You recall I had asked you this question earlier. If you have 

a cantilever beam, for example, and if you have a mass at the free end, you can replace 

the beam with a spring; both have elastic behavior. Let us say the static deflection is 

deltastatic. In the undeformed configuration, you have potential energy in the mass but no 

elastic energy in the spring. Both are forms of potential energy; in the deformed position, 

the mass has lost some potential energy and the spring has gained some elastic potential 

energy – that is the elastic potential energy; the other one is gravitational potential.  

Are these two quantities equal? Are you convinced that the answer is no? We have heard 

about the principle of conservation of energy and they should be equal; the loss in 

potential energy in the mass should be is equal to the gain in elastic energy in the spring. 

Am I right or wrong? But you would find that when you do the calculation…. If it would 

be an ideal system, then it would have some velocity. That is the correct answer.  

You really do not have a static equilibrium position. It is like a pendulum – the pendulum 

moves back and forth unless you stop it. If you stop it.… It will stop its own due to 

various dissipative forces due to friction and that energy is lost. The same thing happens 

here. If you work out the calculations, the loss in gravitational potential energy is m into 



g into deltastatic and the gain in strain energy in the elastic spring is half into m into g into 

deltastatic; so, there is a half which gets lost. That is the energy dissipation that you get. 
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If you really had in ideal system, it will not lose any energy; it will actually gain 

maximum velocity at the so-called static equilibrium position and it will move down 

further. But then, you are violating static equilibrium and so the spring will move back, 

will move back and forth, it will keep tracing the path up and down on that P-delta curve. 

You can prove that the dynamic displacement or the total displacement that you get will 

be two times that of the static displacement in an ideal system. But, our real systems are 

not ideal; there is going to be dissipation of energy. If you really want to model it, you 

should put a dash part which takes care of the dissipation energy.  

We make one big assumption. The graph that you see here shows simple harmonic 

motion, but in reality we know that things come to a stop and they come to a stop fairly 

quickly. Instead of loading it suddenly, we simulate in our minds the concept of gradual 

loading under adiabatic conditions, which is called static loading. That means in our 

minds, let us assume that it takes a long time to gradually load the beam – so slowly that 

there are no accelerations in the beam and we reach the same static deflection.  
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There is a nice concept called strain energy density in a material; that is referred to by the 

symbol mu. It is really integral sigma into D epsilon. It is a measure of strain energy per 

unit volume in an elastic material subject to gradually increasing strain under adiabatic 

conditions; there is no heat transfer assumed. This means that there must be no heat flow 

through the system. In most situations in elasticity, however, the reality is somewhere in 

between isothermal, which means constant temperature, and adiabatic.  

With this assumption, if you integrate the strain energy through the volume of a bar that 

is subject to axial tension, then you get the classic equations of half... Half comes if it is 

linear; half integral axial force times the strain integrated over the length of the bar. 

There is another term which is called complementary strain energy density. Here, you 

visualize the incrementing of energy coming from an increment in the force or the stress 

rather than in the displacement. You know you can do loading either displacement-

controlled or force-controlled. If you do it force-controlled, then the product which is 

also energy would take this form and we refer to it as mu star. It is the other complement 

of the rectangle which contains the total energy. Sometimes, it has a physical meaning 

but often, it does not.  
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Let us not worry about strain energy density; let us talk about absolute strain energy. Let 

us talk of a nonlinear elastic system where you can prove that the total strain energy is 

the area under the curve when you have gradual loading. Ideally, you can visualize strain 

energy as a form of internal energy in an elastic system as the work we need to perform 

in order to lead the system gradually from the undeformed configuration to the deformed 

configuration.  

The energy depends only on the initial and final configuration. In a truly conservative 

system, this is true; it is called a point function. When you return, the path of that carve is 

completely retraced and that energy is totally recoverable. The complementary strain 

energy is a complement to this energy. That means if you take the area of the rectangle 

and you subtract this energy, what you get is U star.  
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Now, let us talk about linear elastic behavior. In fact, that is what we will deal with most 

of the time unless you have nonlinearity. The beauty in linear elastic behavior is these 

two terms are interchangeable. U is equal to U star is equal to half the maximum force 

times displacement. What we need in structural analysis is how to compute strain energy 

and complementary strain energy in beams, frames, trusses, torsional members and so 

on. You have axial strain energy; this is the expression.  

You have two forms. In one form, you express it in terms of the displacement or the 

strain; in the other form, you express it in terms of the force. Both are equal: U and U 

star. This is the expression for a truss which is made up of many members (Refer Slide 

Time: 37:10). You just have to add up the strain energies in all the elements; you are 

familiar with this; the factor half comes.  

This is the strain energy in a beam or in a frame where you are concerned only with 

flexural strain energy U and U star. This is the strain energy caused by shear, which is 

usually neglected (Refer Slide Time: 37:33). We will see later that it is not always 

negligible. You have the torsional strain energy. In all these expressions, you will find 

some rigidity terms appearing. For axial strain energy, the rigidity term is EA. It is called 

axial rigidity; it is a product of the elastic modulus and the cross-sectional area.  

For the bending term, you have EI, which is flexural rigidity. It is a measure of the 

stiffness; it is the product of the elastic modulus and the second moment of area. For 



shear rigidity, you have G A dash – that gives us the shear strain energy; you have G J 

for a prismatic circular section – J is the polar moment of inertia and G is the shear 

modulus. For non-prismatic sections and for non-circular sections, you do not have a 

case of pure torsion; you have warping coming into place; you have some distortion 

coming into place.  
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If you have axial force, the corresponding displacement deformation parameter is 

elongation; you are familiar with the straight line behavior. This is what you get in a 

truss member. In a beam, let us say, a beam subjected to constant bending, the radius of 

curvature is constant, so the angle subtended is theta0; theta0 is curvature into L and so 

the conjugate of bending moment is rotation and the slope of that line is EI by L.  

EI by L is a measure of flexural stiffness; in the first picture, EA by L is measure of axial 

stiffness. If you do not have uniform moment, then it is EI by L into some multiple – 2 or 

3 or 4 or 5. Similarly, here, if you talk about shear strain energy and let us say you have a 

beam subjected to constant shear force, then the shear deformation is delta0, which is the 

shear strain gamma and is constant for that segment, into the length of the element. The 

slope of this, which is a measure of shear stiffness, is G into A dash by L.  

Where are these terms used? You know about shear walls in buildings. If you have a 

very tall building and the wall is narrow in length, then it will behave like a beam; so, 

you have mostly flexural strain energy. If you have a short squat shear wall, it resists 



lateral load, then the predominant energy would be shear strain energy. If you have a 

wall which is of intermediate size, then you have both these stiffnesses coming into play. 

If you want to be exact, you should not ignore the shear deformations and include their 

effect. Similarly, the deformation that you would relate with torsion would be the angle 

of twist and the slope of that line; here is a shaft subjected to pure torque is G into J by L.  
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Next question. If I have a beam or any elastic body and if I apply some load and it has a 

strain energy U1, then I apply independently some other load and it has a strain energy 

U2 and if I apply both these loads simultaneously, would the total length strain energy be 

U1 plus U2? ((.)) Why not? On the graph, we can ((.)). You can understand this when 

you draw a graph; you are right. You will find that the two triangular areas caused by F1 

and F2 are what you would get independently as U1 and U2, but you have to take the 

total area under the curve, which includes this rectangular segment. What does that area 

represent – that rectangular area? The first system that does work on the second system 

((.)).  

You first applied a load F1 and the system underwent a deformation D1; then, you 

applied F2 and F1 is also going to move, but not caused by itself but caused by another 

agency F2; that movement does not have a cause-effect relationship; so, there is no half 

coming in; it is a solid quantity. That is the portion that we tend to miss out; you can 



prove that that additional strain energy delta U is two times square root of U1 and U2. 

This can be easily proved.  
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The standard problem that you need to know is how to complete strain energy in any 

truss, in any frame and in any beam. Very quickly, we will go through this example; you 

have done this earlier. Let us say you have a frame – a cantilever frame; it has got this 

loading. We have earlier calculated D1 and D2 and now we want to find out what is the 

strain energy in this system.  

Let us do it exactly; that means let us compute all the strain energy components that are 

possible. A frame will have, in general, bending strain energy, shear strain energy and 

axial strain energy. Please note that we are actually computing the complementary strain 

energy and we are invoking the principle that that is numerically equal to the strain 

energy. So, the formulas are half into integral M square into dx by EI plus half integral S 

square into dx by G A dash plus half integral N squared into EA by dx, representing the 

bending shear and axial strain energies.  

One question I need to ask you: why do we have G A dash? What is this A dash? A dash 

is the reduced area of ((.)). Why do we not take the full area of the rectangular section? 

Total area is ((.)) subjected to total shear stress, maximum shear stress; we have to take 

the average ((.)). That is right. Under flexure, you have nonuniform shear stress; it is not 

like direct shear where you have uniform stress. If you have direct shear, you could use 



GA, but you have nonuniform shear stress; you can prove that you have to get an 

equivalent area and it is usually a reduced area; it is that area divided by 1.2, for 

example, for a rectangular section and that factor is called a form factor.  

Let us quickly do the calculations. You have a rectangular section; it is easy to calculate 

I, the second moment of area; it is B into D cubed by 12. The area is B into D and the 

reduced area, the shear area, is A divided by 1.2 for a rectangular section. The elastic 

modulus, E, is given to you and the shear modulus is E divided by 2 into 1 plus nu, 

which is Poisson's ratio; so, you have those two material properties. Then, you can find 

the three rigidities just by multiplying; E into I will give you flexural rigidity; E into A 

will give you axial rigidity; and G A dash will give you shear rigidity. We will just 

quickly go through the concept; you have done this earlier.  
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Your first job is to analyze this frame. You can easily draw the free body diagrams and 

then draw the bending moment, shear force, and axial force diagrams; we have done this 

earlier. You can use these three diagrams, one at a time, to actually compute the energy 

quantities.  
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Let us take flexural energy. This is your bending moment diagram and we are going 

prove that the flexural energy is the predominant energy. You can do this integration. It 

is integral M square dx by E I; you have to do this in parts because the bending moment 

diagram is changing; you can do it. This is a hard and long way of doing it. Is there an 

easier way of calculating? Volume integral. Yes, you can use volume integral; you can 

use the area multiplication method and it is much faster.  
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Let us take the second case which is shear strain energy. This is very easy to do by the 

area multiplication method; you just have to multiply this diagram with itself.  
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Then, you also have the axial strain energy. You have the three quantities and when you 

add them up, you will find something very interesting; that is, the bending strain energy 

here is 109.705 newton meter, shear strain energy is only 0.58 and axial strain energy is 

only 0.30; the total is 110.6 (Refer Slide Time: 47:09). You can clearly see that you can 

ignore shear deformations and axial deformations. It is like a assuming that the shear 

rigidity is infinite and the actual rigidity is infinite; that is the reason why this assumption 

that we frequently make in structural analysis when we deal with frames is justified. But, 

there are exceptions and if you want to be accurate, you can include those effects as well. 

In matrix methods, we will do problems where we can do this more exactly. 
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Now, one of the theorems which is sometimes very useful to apply is this concept called 

the external work done. When you lower a system gradually ((.)) from 0 to its maximum 

value will be equal to the total internal work done. Remember: if it is a linear elastic 

system, the factor half will apply also to the external work. This is different from virtual 

work; this is real work. So, if you invoke this theorem, you can prove it very easily using 

the principle of virtual work because the principle of virtual work just says the total 

external virtual work is equal to total internal virtual work. Here, you are referring to the 

force field and displacement field in the same structure with a cause-effect relationship.  

If you multiply both sides of the equation by half, then you will notice that what you get 

on the right-hand side, the internal virtual work times half is nothing but elastic strain 

energy. Is it clear? That is why the strain energy is exactly equal to the external virtual 

work. But if there is some initial strain energy locked into a system and often you have 

that for example, when you load rolled steel beams, you have some residual stress locked 

into the beam, then you need to subtract that part because it is only the incremental 

change in energy that you are measuring when you are calculating.  

You can actually prove Betti's Theorem using this formulation. If you apply one system 

first and then the other system, you change the sequence and you write the two 

expressions and you compare the two expressions, you can end up proving Betti's 



Theorem; so, this is an alternative proof. You can prove Betti's Theorem either following 

the path of the principle of virtual work or invoking this energy theorem. 
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Similarly, you can prove Maxwell's Reciprocal Theorem; the proof is clear. We will stop 

here. Thank you. 
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