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Analysis of elastic instability and second-order effects 

Good morning. This is lecture number 40, the concluding lecture in module 7, which 

deals with the Analysis of elastic instability and second order effects. 
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If you recall, in the last session, we looked at the slope deflection method of analysis 

which is the manual method. Now, we will look at more systematic way of solving the 

same problem using the matrix method of analysis. We will be using the conventional 

stiffness method. 
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So, this is covered in the last chapter, in the book on Advanced Structural Analysis. 
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You are very familiar with all these methods. So, it is just to remind you that we will be 

using only the conventional stiffness method here. 
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So, if you are using a beam element, which will now be called a beam column element 

because we are going to consider the interaction between the axial force and the bending 

and shear forces, and their effects. So, it is more appropriately called a beam column 

element, and so, we are switching over from the beam element to the beam column 

element with the difference that we now have an axial force P i whose value is known; P 

i is known in advance. 

So, if you write down the measures of flexural stiffness, they will take this form; instead 

of 4 Ei by L, we have capital S; instead of 2 Ei by L as a carryover moment, we have r 

into S, and these are called stability functions; they are trigonometric functions. And if 

you have a case of axial tension instead of compression, then you have them in a 

hyperbolic form. 
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You are familiar with this and so we can easily generate the stiffness coefficients 

corresponding to the 4 displacements, applying them one at a time; the easiest to apply is 

when you have a unit rotation. At one end, instead of 4 Ei by L, we have S i; carry over 

moment will be r i S i, and then the shear forces come easily, as the some of those two 

moments divided by the span. 

If you have translation with both the ends fixed, then you have an equivalent chord 

rotation given by 1 by L, and the formulation is similar; similar to what we did for a 

conventional beam element without any axial force acting. 

If you recall, if you had a clockwise chord rotation, you have anticlockwise moments at 

the two ends in the conventional beam element; they were equal and their value was 6 EI 

by L square. Instead of 6 EI by L square, we now write it as s into 1 plus r divided by L. 

So, if you plug in those earlier values of S equal to 4 EI by L and r equal to half, you will 

get the same result. 
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So, we have this familiar form of the 4 by 4 element stiffness matrix and we can easily 

generate all the parameters. If the axial force is compressive, you have it in this form; if 

the axial force is tensile, you have it in this form. Now, all this we are familiar with. We 

have actually used this when we did the slope deflection method, except that in the slope 

deflection method, we use what is equivalent to the reduced element stiffness 

formulation. Now, these trigonometric functions are not very convenient to use. So, 

luckily, for us, there is a major simplification possible, and let us look at that. 
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So, if you have a 6 degree of freedom element, if you had a plane frame element instead 

of a beam element, here also you have an axial force, but the big difference is you do not 

know the value of the axial force. So, we leave it as f 1 star and f 4 star, which must be in 

equilibrium with each other. And also here, we are allowing axial deformations which 

were not accounted for in the previous case. So, you can use this for plane frame 

problems and you have the standard 6 by 6 elements stiffness matrix, where the flexural 

components are suitably modified. 

So, what is happening here is - the axial stiffness is still not changing; it is still A by L, 

but it is indirectly affecting the flexural stiffness components. 
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So, it takes this form, and if the value of the parameter mu L… what is mu L? Square 

root of PL square by EI. Then, we can simplify the formulation by expanding these 

trigonometric functions in a Taylor series form; so, it takes this simple form. If you take 

the first 2 terms for a sine function and a cosine function, and you plug in these values in 

the stability function, you get a very beautiful result. 

You have only 2 terms and you have a kind of a constant, a linear relationship with P i. 

So, that makes the whole thing very simple. You do not have any more sine and cos, and 

if you have that hyperbolic function, then it takes this form. 
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Now, one way to understand this, it is a simpler way rather than remembering these 

expressions, is to interpret them physically. 

So, I have shown here in this figure, the standard force stiffness values for a beam 

element. The stiff standard coefficients are shown in yellow color. So, you have 4 EI by 

L, 2 EI by L, 6 EI by L square, as shown there; you are familiar with that. 

You just need to add or subtract an additional term which involves the axial force P. So, 

it is a tremendous simplification, and what you see is naturally the flexural stiffness 

terms; the primary term 4 EI by L gets reduced when you have an axial compression, and 

if the compression is equal to the critical buckling load, it will actually degenerate to 0. 

So, that term is minus 2 P i L i by 15, and the carryover moment on the other side which 

is normally 2 EI by L gets actually increased by a small quantity P L by 30; the 

assumption is P is constant and you know it is value. So, you can actually modify the 

stiffness if you know P. You have an absolute measure of stiffness and the vertical and 

vertical reactions are easily obtainable from these 2 moment terms. So, you will find that 

the 6 EI by L squared gets adjusted by a factor P by 20; it is a force unit. So, you reduce 

on the left side and you increase on the right side for this. 

So, try to remember these formulations. Of course, you do not really need to for your 

examination because this is this portion I am excluding from your examination; this is a 



little advanced, but you can see that, it is quite easy to operate. And likewise, you have 

these correction terms when you apply a translation like this. 

So, if you look at these two terms, the yellow term is your conventional stiffness 

coefficient. So, we will refer to those terms as first order or primary stiffness 

coefficients, and they buildup the primary of first order which I show with the subscript 

o; o meaning first order; k i o star is, in the local coordinate system, the element stiffness 

matrix without any axial force influence coming into play. So, that is the first order 

primary stiffness, and now, to that you have to add or subtract.  

We will say, we add with the appropriate sign, whether positive or negative, and that 

term is called the geometric stiffness matrix. Why is it called geometric? Because it is 

kind of reflecting the geometric nonlinearity in this structure; it actually is looking at the 

effect of the behavior in the deformed configuration. It is only in the deformed 

configuration. The P delta effects come into play and those effects are second order 

effects. You can also call it as second order stiffness matrix and we can write an 

expression for it just by looking at these pictures. 
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You can it take this form. So this is your primary - the yellow color, and this is your 

second order; is it clear? We put minus plus P I; the default is minus if the P i is 

compressive, but it is positive if P i is tensile because you know that the primary stiffness 

gets actually enhanced when you have axial tension. 



So, we have actually simplified the whole problem so beautifully. It is very easy to now 

write down the stiffness matrix. We are including a correction for the axial force. 
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If you have a plane frame element, you can do exactly the same thing; only thing, now 

instead of 4 by 4 matrix, you have a 6 by 6; so, it looks like this; this is your primary 

matrix, where you have the terms as we did earlier. 

Now, you have this additional term for the geometric stiffness matrix. You will find that 

the first row, and the third and the fourth row, and the first column and the fourth 

column, in the geometric stiffness matrix are filled with 0s. The reason is this effect is 

only for the flexural stiffness terms. The geometric stiffness does not get effect does not 

affect the overall stiffness matrix for the axial terms; axial term is still A by L; no change 

in that. 

So, that is it. We are now ready to solve any problem. If someone were to give us a value 

of P, you just have to modify the stiffness and do the same, all there, but this also gives 

us the way of finding out the critical buckling load.  

How do you find the critical buckling load? What? How do you find the P critical? Well, 

not in an element, in a structure, once you assemble the structure. 
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So, the structure stiffness matrix will look like this. After you assembled it, there is no I 

coming in here; you have k equal to k O which is primary, which is what we got earlier, 

plus k G, which is the geometric stiffness matrix for the whole structure. And let us say, 

there are loads acting on the structure, and very conveniently let us apply. They are 

equivalent joint loads and let us apply the loads at the nodes, and let there be no 

moments. 

If you have moments, or if you have a distributed load, you realize that that it really does 

not affect the buckling load capacity of this structure. You remember, when you had 

primary eccentricity, you started of the lateral deflection at some initial point; then, you 

traced asymptotically, the critical buckling load. 

So, how do you define a critical buckling load for a column? The stiffness does not 

become 0; well, if you had one element you could use that language, but for a structure 

you have many components in your stiffness matrix. 

So, how would you say the same thing? If you gradually increase a load P, if it behaves 

in a linear elastic manner, you would find the stiffness matrix is also linearly changing 

because in this simplified form, in this approximate form, the stiffness coefficients are a 

linear function of P. 



If I add, if I you know keep P constant and I increase the load, I still have a linear 

variation, but as I keep doing that, at some point something happens, and the structure 

buckles. That is called elastic instability. How do I locate that value of P, that value of P 

for which buckling takes place? 

 [Noise] 

It does not become 0; that is a wrong word use; it does not change; it may change (( )) P 

It becomes singular. 

Fill in the blanks. It becomes in we have done this earlier in slope deflection method; 

how did you find the critical buckling load? It becomes singular; becomes singular; then 

only, you get an Eigen value formulation; it becomes singular. 
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So, that is how you you just have to take the determinant of the overall stiffness matrix 

and then put the determinant equal to 0, and you have to take only for your active 

degrees of freedom; obviously because your equation is k AA D A equal to 0, you solve 

that. You have got an Eigen value problem here; you get Eigen vectors, not Eigen 

functions because you are dealing with matrices. That is how you solve this problem; is 

it clear? 



So, supposing you had distributed loads, do not worry about them; convert them to 

equivalent concentrated loads; let they be only axial forces in this structure, initially. So, 

if you had what is known as pre buckling moments, it is okay; you keep them aside for 

the time being because they will they do not really affect your critical buckling capacity 

because you have studied earlier that, asymptotically you will hit that value. right Of 

course, probably, your structure will collapse well before that because you have other 

non-linearities coming into play. 

So, the accuracy in the estimate of the critical buckling load can be enhanced by 

reducing the value of the parameter mu L. Please note, those approximations are valid; I 

mean you can reduce it just considering two terms in the Taylor series expansion of the 

sine and cosine function, only if that parameter mu L is small. 

Now, mu L is square root of P L squared by EI; you have no control over P; you have no 

control over EI, but you have control over L. So, if you make your elements smaller, you 

make mu L smaller, and actually, you will get more nodes and you will get a better 

picture of the mode; shape also will look much better. 
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Let us apply it to very easy problems to test out this method. We know the solutions for 

these. We know the Euler buckling load for these two cases. They are ideal braced 

columns; case a - both the ends are fully fixed against translation and rotation; case b - 

they are fixed against translation, but they are free to rotate; it is a pinned condition. 



What is the value of P critical for this? pi squared EI by…No, No, the second case pi 

squared EI by L square k - effective is 1, and the first case 0.5, which means the load will 

be 4 pi squared 4 pi squared EI by L squared; we know that; we know the answer. 

Let us see, we can get this answer by matrix method. So, obviously, you need to create 

some nodes. How many elements would you recommend? This is just one element; you 

would not be able to get the result with one element; you need a, because the two ends 

have to, there has to be displacement lateral displacement. know 

If you need a node, how many minimum well you just need? We will try this out; we will 

just put 1 node in the middle; you can do with 3 elements; you will get a better result 

with 4 elements; even you know much better result. 

But let us check out with just 2 elements whether we get a reasonably good result or not; 

that will validate our method. So, we will do that and we will write the stiffness matrix, 

and we will put the determinant equal to 0 for the active degrees of freedom. 

Now, if I divide this into two elements, how many global degrees of freedom will I 

have? Global coordinates in case a, active global coordinates in case a. If I put a node in 

the middle – active; well at that node, you have a translation and you have a rotation, and 

at the two ends if you are doing a beam element, you do not have axial deformations. So, 

you do not need to introduce that degree of it. So, you just have two active degrees of 

freedom, and for the second case, you have those 2 plus you have 2 rotations; so, that is 

it. 
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So, this is the first case. I have put it horizontally; does not matter. The column can be 

made horizontal. I have put a node in the middle. So, 1 and 2 active, and then, of course, 

I have restrained coordinates 3, 4, 5, and 6; does this is this clear? 

In the second case, I have 1 and 2as before, but I have also have two end rotations 3 and 

4, and I have only 2 restraint coordinates 5 and 6. Is this clear? It is very simple. What 

about local coordinates?  
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Well, that is a standard beam element. Except that, we are having a constant axial force 

P; it is the same P in both of them; it is the same P because it is a single column, and we 

write down the stiffness matrix which has the first order component which is the 

standard stiffness matrix, and we put a minus P to bring in the geometric stiffness part. Is 

it clear? So, this we know. These two matrices we have derived. 

So, this is at the element level; at the element level at the element level, the stiffness 

matrices are always singular; do not worry. It is only when you build the structure 

stiffness matrix and you take the k A A part; that would not be singular normally, unless 

you have a instability caused by buckling; you follow? So, there must be some value of P 

which will reduce the flexural stiffness to an unstable situation. 
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So, how do we generate the stiffness matrix for the structure? Well, first, you need the 

transformation matrices and they are simple. We have done this before. They are identity 

matrices. You have to correctly put the linking coordinates very clearly; it is 3 4 1 2 for 

the first element, and 1 2 5 6 for the second element, in case a. In case b, what will 

happen? The same T 1 T 2, but the linking coordinates will be… you have to be careful. 

It should be a written as 5 3 1 2.  



(Refer Slide Time: 21:22) 

 

So, that, we need to do. Then, you generate the structure stiffness matrix; case a both 

ends fixed. Please note the minus P is stands out in the geometric part. 
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And second case, both ends pinned; you can easily generate this. 
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What do you do next? You got the k A for both of them. Let us take the first case. First 

what do you do? You write down the determinant; that is it. So, this is your… and I will 

you can see very clearly, why the determinant should be 0. If you go back to case a, this 

is look at the top left hand corner; k A is that portion on the left, and for the secondary, it 

is minus P into that portion. 
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So, it is going to look like this and if you expand it, that is the equation you get when you 

write down the equilibrium equation because there is no external load acting on it. P is 



the load which is implicitly there, but there is no f 1 and there is no f 2, but it is just a you 

know actually loaded column; there is no f 1 f 2. So, this can have a trivial solution. 

What is a trivial solution? D 1 equal 0, D 2 equal to 0, which means the column remains 

straight; no buckling. 

So, if you want a non-trivial solution, that determinant has to be 0; is it clear? That is 

how we say, the determinant. So, you made equal to 0; you will get an equation; that 

equation is called that is how characteristic equation; that is the characteristic equation. 

How many solutions will you get for that? 

It is a 2 by 2 matrix. So, you have 2 solutions. What are those solutions called? Eigen 

values. They are called Eigen values. They are called Eigen values and we are really 

interested in the lower of the 2 because buckling will take place at the lower load. So, 

you can solve that equation and pick up the lower value, and you have got an answer, 

and the exact answer is 4 pi squared EI by L square which turns out to be 39.478. You 

got 40 is at good enough for an engineer; fantastic. 
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But you will get a better solution if you had 3 or 4 elements. right Similarly, you do it for 

both ends pinned. You have now 4 by 4; you get 4 Eigen values, but can we simplify this 

you can if you make some assumptions. 



You have a rough idea what that first mode shape is going to be. So, is there any 

relationship between D 1, D 2, D 3, D 4 that you can intelligently utilize? What can you 

say, looking at the mode shape of a pinned? 

D 3 is equal to (( )) 

D 3 is equal to D 4, minus D 4 because it is equal and opposite. Yes because of 

symmetry, what else can you see? because of symmetry (( )) D 2 is 0. 

D 2 is 0. 

So, can we reduce this to a 2 by 2 form? Yes. You can. You know you can plug in 

wherever you see D 3 and D 4. You take one of them; you write D 4 is equal to minus D 

3; so, you got rid of D 4. Wherever you have D 2, you put it equal to 0, and you rewrite, 

expand, and rewrite those matrices. This is called condensation. It is called static 

condensation in matrix methods. This is one technique of reducing the size of your 

matrix when you have inter relationships in your displacement vector. 
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So, you do that exactly what you said; do that and then if you expand it out, it will reduce 

to this form. You have only D 1 and D 3; you got rid of D 4 and you got rid of D 2. 
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Now, you take the determinant of this. Take its Eigen value, the lower value; you get 

9.944. What is the exact answer? pi squared EI. It is 9.869. Some error is there and if you 

want the mode shapes, you get them also, except that when you have 2 elements, you just 

get one delta. It does not really help you, but still, you can try to plot it. You do not know 

the curvature of those lines. 

So, we are guessing that it is going to look like this because we know, the slopes have to 

be 0 at the two ends in case a. But if you really want to generate that mode shape more 

correctly, in a case you did not know what would you need to do, here, you have only 

delta and 0 0. 

So, you could join with the straight line if you wish, but that is wrong. So, if you want it, 

let us say, I want value at quarters span point in relation delta; what should I do? I just 

need to create a node there, which means, if I have 4 elements, I get the quarter span 

displacements in relation to the mid span. You understand, that is how I do it, if I really 

want to know the mode shape; is it clear? 

But in the exact solution, Eigen solution, you get the mode shape nicely as a sinusoidal 

function. So, that is more exact. That gives you the mode shape value at all the points on 

the beam. 
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Let us demonstrate with the portal frame. It is an unsymmetrically loaded portal frame. 

Typically, how you find the buckling load is - you have to keep incrementing the loads. 

Let us say you start with 0, but you keep that proportionality; you know if one at C you 

have applying P at B, it should be 2 times whatever you are applying, and if you what to 

do an experiment you keep loading it, maintaining that ratio. That is called a load factor, 

by the way. So, if you had loads all over the place, you multiply all by the same factor; 

keep building it up, and at some points, what is going to happen? It is going to buckle, 

and most likely this is a shape it is going to take. 

Now, your job is to find that critical buckling load, what is P critical? So, how do we do 

this? Well, procedure is exactly the same and we can have some guesses. Can you guess 

some initial values in that frame? Which of the 2 columns will govern the buckling load, 

the left one or the right one? 

The left one. 

Left; why because it more heavily loaded, and the length is the same and the cross 

sections are the same. So, the left one. So, what are the limiting values that you expect 

for that elements? 

(( )) 



It depends. You can remove the left one and put a rotational spring at B to take care of 

the remaining portion B C D, and the stiffness can have two extreme values to get you 

the lower and upper bounds; one is 0, when it is a cantilever. For a cantilever, what will 

be the k e cantilever? 

Y 4. 

Cantilever k e will be 2 L. 

2; effective length ratio is 2 times. You know that we have done this problem earlier and 

if it is fully fixed. Come on; it is an unbraced frame. Just look at the deflected shape; 

there is going to a chord rotation; it will be 1. 

So, those are your limits. You should able to guess them correctly. k e will be either 2 or 

1; most likely it will be somewhere in between; you have to find out the value; that is so, 

you must always, as an engineer, have a guess have an initial guess - what the likely load 

is. 
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So, you write down. This is a slide; I am picking it from what we did when we did portal 

frames without any beam column effect, without any P delta effect. So, this is straight. 

From that, you have 6 degrees of freedom which are active and 6 which are restraint. 

You can generate the T i matrix for all of them. 
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We have done this before - 3 elements, but now, when you write down the stiffness 

matrix, you have to make a small correction for P, but do you know P? Yes. We know 

one is P; there is a P for element 1 which is 2 P, and for element 3, it is P. What about 

element 2? Will it have any force at the point of buckling? In the deflected shape, you 

may get some force. 

This is the This is what you need to do for all the elements, but you have to put in the 

correct value of P. 
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Now, you may get an axial force in B C, but it is very minimal. So, this is one convenient 

assumption we always do in a beam column. You worry about axial, the effect of axial 

load, only when the axial load is significant, if it is a very small. So, in beams, we 

usually ignore it; in columns you have to… 

Now, for example, here, that 2 P can come from the floors. Let us say, this is a 20 storied 

building, and I am trying to simulate the lower storey, lower most storey; then, that is the 

weight of all the floors coming from above; is it clear? 

So, these are the kind of physical meanings you can have. So, we are saying P 1 is 2 P, P 

2 is 0, and P 3 is P.  
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Once you know this and you know the properties of elements 1, 2, and 3, which we 

already derived, you can derive the 3 element stiffness matrices. For element 2, it is 

exactly what we had earlier; no change. For element 1 and 3 is going to change, and P 

comes into play. You have to just write down that k’s, i’s, o star plus k i g star. So, when 

you add it all together, it takes this form; is it clear for elements 1 and 3? 
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Then you assemble the structure stiffness matrix exactly the same way we did earlier, 

and you will get. You can write it in this form and it is exactly the same procedure; only 

thing, an unknown P comes into the picture. 
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Finally, you get k AA in this form; that is all you need; you do not need k AR and k RR, 

and if you want to get the correct answer, then you must find the determinant of this 

matrix. 



Now, you are going to deal with very large numbers. You can see there because 556, 

565, etcetera you know. You got 6 digits out there. So, it is good to work with another 

alternative measure of the critical buckling loads. 

So, let us bring in lambda which we can call P by EI; EI of any of those columns EI 1 or 

EI 3 - they are both the same, and when you do that, your equation simplifies to this 

format. If you divide throughout, if you normalize, it is the same equation. See, whether 

the determinant of the first matrix vanishes or an equivalent matrix vanishes, it is the 

same; it will give you the same result, but you are working with the better value. We 

have brought in lambda into the picture. 

We just divided P by EI which means divide all the value by EI. You will automatically 

get lambda in the picture, and now what do we do? What method do you use to get 

lambda? You get 6 Eigen values in this. 

We are not interested in all 6. We are happy with the first one; if it is a dynamics 

problem, when the dynamics is similar to instability in this respect, then you may be 

interested in higher Eigenvalues also because they get excited; higher natural frequencies 

get excited by arbitrary loading, but in buckling, you do not have that problem. It will 

fail. you know Some people made the suggestion: look, if I have a column, let us say, 

pinned; pinned when I apply a load here, it is going to buckle like that. 

So, maybe I will hold it in the middle, and once I hold it in the middle and prevent it 

from latterly moving in the middle, the you know the it goes to the second mode before it 

buckles. 

So, if I go to a slightly higher value than P, let us say, I put 2 times P; then, I remove my 

hands; may be it will stand. Well, theoretically, it will stand, but experimentally, it has 

been proved that it does not work. There is no way, it is going to go back and fail in the 

first mode. 

So, this the lowest mode will always dictate the capacity of the structure. So, here, what 

you can do? You need You can do something like the bisection method, but you need 

some trial values. You have no idea how to pick them up. You do not know whether you 

can start somewhere; start with the lowest buckling load. 



(Refer Slide Time: 35:39) 

 

(Refer Slide Time: 35:48) 

 

So, we want to find out what gives you the lowest value. So, you remember, the lowest is 

when A B behaves like a cantilever. So, you can easily find out for that, when it is a 

cantilever, what is the value of lambda? Now, if you put this value of lambda into that 

expression, for the determinant g of lambda, will it be positive or negative in the 

bisection method? You need to figure that also. 

So, you do not know until you put it in that value. So, put it in and you can find the 

determinant easily by mat lab. It turns out to be positive. You get some value plus 



something. Now, you need to trap another value which is negative. Now, you need not 

go to the other extreme. 

So, how do you get the next value? What is the clever way of doing it? You do not need 

to go to the upper bound. You need to think. So, what should you do? Cleverly do trial 

and error; few trials are enough. What is the next trial you will take? Double; you I mean 

work with round numbers; trial lambda equal to 2; trial lambda equal to 3; trial lambda 

equal to 4 because we do not want it exactly. 

We are doing bisection method. We just want the nearest positive value. So, you do that 

little exercise incremented in steps of one. You will find when you put lambda equal to 

in this case 0.1, because 0.077 is very low; at 0.4, you are going to hit a negative value; 

at 0.3, it will still be positive; you can check it out. 

So, now, you can do the bisection method. You have got the 2 values. You know the 

lambda critical is between 0.077 and 0.4, and you do the bisection method. You get the 

correct value of lambda critical, and you get the solution as 6072 kilonewton; that is it. 

It is a little approximate because we are using that function. We are using the concept of 

geometric stiffness. If you want more accuracy, put in some more nodes, one more node, 

and check it out, but this is reasonably good. 
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So, this is how you can do instability analysis for any structure. We do not have time to 

do a second order analysis, but this is explained at length in the book, what do you need 

to do? Let us take a problem like this. I am not going to solve it, but at least let us figure 

out how to solve it. 

So, you have got the load at the mid span - 1000 kilonewton. You also got a lateral load 

100 kilonewton; the frame is the same frame which we analyzed earlier. The first thing 

you should do is carry out a conventional first order analysis and find out the axial forces 

in the 3 elements. You can you will get it automatically from the program that you 

develop for analyzing plane frames. 

So, we will get it. Then, you take those axial forces which you got and modify the 

geometric stiffness matrix and run it again; you get a solution; another solution; will that 

be correct? Why not, It is a reasonably correct solution, but if you want more accuracy, 

you should check out the axial forces you now get. So, typically, non-linear analysis is 

like this. You do not know the actual axial forces, but you get a first order of 

understanding when you do one run, then you pick up the value, modify the stiffness 

with those values and do a second run. 

You can do a third run usually with 2 or 3 runs, and anyway, the computer is doing it; 

you are not doing it; the effort needed is just to program it; you have a tolerance level 

and that gives you your complete solution. 
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So, this is demonstrated in the book. You can do any number of problems of this type. 

So, my friends, we have come to the end. This is the last technical lecture we are having.  

If you look carefully, what did we do in advanced structural analysis, first 2 modules - 

we actually reviewed basic structural analysis. In the first module, we actually looked at 

an introduction to what we do in structural analysis; specifically, we looked at statically 

determinate structures, how to find the force response in statically determinate structures. 

We looked at typical beams, trusses, arches, funicular arches, cable systems, plane 

frames. You also briefly looked at space frames and space trusses. Then, we looked at 

ways of finding displacements, deflections in trusses, deflections in beams, rotations, 

curvatures in beams and frames. And we did this by many methods, but we found that 

the most powerful and general method is that of by the principle of virtual work. And 

then, we looked at other energy theorems which could handle both statics problems and 

kinematics problems, and they were they had their equivalent work theorems. You had 

the principle of virtual displacements; principle of virtual forces. 

Then, in the second review, we spent lot of time on indeterminate structures. You first 

looked at statically indeterminate structures and we looked at complex problems 

including elastic supports and grids, and so on. 

Then we did and that is a new thing. I think it is a IT topic which I believe is not very 

well learnt in many university’s displacement methods. 

We did not study them independently; we looked at them together; we did an 

introduction to displacement methods; then we looked at slope deflection method and 

moment distribution method. And the real thing we learnt is how we can dramatically 

bring down the degree of kinematic indeterminacy by having a feel for the structural 

response, taking advantage of releases, guided fixed supports, and hinge supports. 

We also looked at how you can deal with frames which had the symmetry; subject to 

lateral loading, how you can simplify the analysis. We also looked at approximate 

methods of lateral loading analysis. 

So, we did all that. Then, we got in to matrix methods. We first did a mathematical 

review of basic concepts. 



Now, you see all those concepts we have been using, including Eigen values; all the way 

to the end, it is basically linear algebra. Then, we when you first saw that, you were not 

very comfortable because you know trying to solve structural analysis problems with 

matrices look daunting. 

We looked at powerful transformations, we looked at the contra gradient principles, and 

the general theory that is in the third module, and we specifically went into every type of 

structure. We went into trusses axial elements; we went into space trusses in module 4; 

we looked at beams and grids in module 5; we looked at plane and space frames in 

module 6. 

And in this module, we took a kind of overview. We did not go the…, but we have a 

clear idea on what to do, when you have to worry about elastic instability, and second 

order effect. So, 40 lectures. 
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One more lecture to go; that is a general lecture, but to remind you, I have written two 

books and we have used the material in this book, these two books for the study. You 

need to look at those books to really understand what is going on. 

And with that, yeah this is just to tell you that these, the paperback edition is available in 

India published by Narosa in 2008 and 2009, and the international edition hard bound 

published by Alpha Science from Oxford, UK; that is it. 
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Thank you very much. 

Before I end, I also want to place on record, the tremendous help I got from Nazeeb 

Sharif; Sharif just stand up; give him a hand. 

He is being he is my M S student; he is being the TA who helped us in this. I am grateful 

to the staff of NPTEL without whose support we wouldnot have been able to do this. In 

particular, I wish to place on record, the support given by Manikandan who is not here, 

who is the one who made many of the slides that you have access to. 

Thank you very much, bye. 

 


