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Review of Basic Structural Analysis-1 

Good morning. We are now on to lecture 4 in the first module which deals with review 

of basic structural analysis. 

(Refer Slide Time: 00:24) 

 

This is the first of 7 modules and in this module, we will be covering work and energy 

methods. 



(Refer Slide Time: 00:31) 

 

In the last class, we covered statistically determinate structures.  

(Refer Slide Time: 00:37) 

 

This slide shows the summary of what we do in structural analysis. We try to find the 

response of a given structure subjected to a given loading and we are interested in both 

the force response and displacement response. We will now look at virtual work 

formulation of finding these two responses. To find unknown forces in the force field 

which satisfy equilibrium, we can invoke the principle of virtual displacement; to find 



unknown displacements in the displacement field, we can invoke the principle of virtual 

forces. 

(Refer Slide Time: 01:24) 

 

To begin, this slide shows what we mean by coordinates and how we use these 

coordinate indices to identify external joint forces and joint displacements. Fj and Dj are 

the respective joint forces and joint displacements in a truss at the pin joint. Some of 

these forces could be reactions and the corresponding displacements would be arrested. 

The rest of the joint forces would be direct actions; the direction of those loads and the 

locations are marked. From the internal side, you have bar forces Ni and corresponding 

bar elongations ei. 

The bar elongations are related to the joint displacements through relationships called 

compatibility and the internal forces in the various bars are related to the external joint 

forces through equilibrium. The force field must satisfy equilibrium, which means it 

must be statically admissible; the displacement field must satisfy compatibility and it 

must be kinematically admissible. 



(Refer Slide Time: 02:55) 

 

Here is a very useful principle called the principle of virtual work, originally discovered 

by Bernoulli. In its original form, it actually dealt with the behavior of a rigid body. You 

see here a rigid body subjected to various external forces. We could resolve all the 

external forces to a resultant force and if that resultant force is equal to 0, we know that 

the system, the structure, the body is in a state of static equilibrium.  

What Bernoulli suggested was to give a very small displacement to the whole body. It is 

an imaginary displacement, it is a virtual displacement; it is a displacement to be given in 

such a manner as to not to disturb the force field. If you find out the delta components, 

you have F1, F2, F3, F4, that is, the change in position of the points of application of the 

various forces, and if you do a scalar product of all of them and add up algebraically, you 

get the total work done on this body. That total work done must… Actually, it is a dot 

product of the force and the displacement vectors; that must be equal to 0 if the body is 

in equilibrium; it easily follows from this. 



(Refer Slide Time: 04:43) 

 

Although this was originally proposed for rigid bodies, this can also be applied for 

deformable bodies; all our structures are deformable. If you go back to the earlier 

problem of the truss, we can actually extend the principle of virtual work to a more 

expanded and diverse application where we can even visualize two identical structures; 

we look at the force field in one of them and the displacement field in the other. The 

advantage of looking at it this way is you remove the cause-effect dependence between 

the force field and the displacement field.  

Let us call the first field where we have a statically admissible force field as system I and 

the other system where we look only at the displacements as system II, where we have a 

kinematically admissible displacement field. In this field, we look at the Djs. In this 

particular example, you have 14 values of Dj and you have 11 values of ei because there 

are 11 members and they are all interrelated – bound together by compatibility. The 

compatibility ensures that the whole truss is held together. You do not have any 

separation of any joint from any member at any location.  

In the first field, we have 14 values of the joint forces Fj and 11 values of the bar forces 

Ni. These two are also interrelated through equilibrium relationships. You could have a 

situation where there is a cause-effect relationship between system I and II, but that is 

not necessary for the proof of this principle. This is a powerful principle and we will 

accept it for the time being without any proof. It says that if you were to multiply Fj with 



Dj and you do it so that you have a conjugate product of Fj and Dj, Fj and Dj are at the 

same location pointing in the same direction. If one points in the opposite direction, you 

have a negative value of that scalar product and if you do an algebraic sum over all the 

joints, in this case 14 joints, you get a product which has the unit of work, but it is 

appropriate to call this as virtual work and external virtual work.  

It is virtual because it is not real – you are just multiplying two numbers. There is some 

commonality between those numbers, but there is no relation – no cause-effect 

relationship. The sequence of loading and all do not come into this, which would come in 

in an energy formulation; that is the advantage of a virtual work formulation. Now if you 

take the internal field, the internal force is Ni in system I, and corresponding ei in system 

II and do product and an algebraic sum, then you have the internal virtual work.  

These two numbers, they have units of joules and will be exactly equal. There is no 

requirement that the structure should behave elastically. You can use this for even non-

linear behavior and for even plastic behavior. The only requirement is that the force field 

should satisfy equilibrium and the displacement field should satisfy compatibility. The 

joints can also move; you can see here that the entire system is moving; the supports can 

also move, but the internal integrity of the structure should be present. Is it clear? 

(Refer Slide Time: 08:48) 

 

Now, we will show a simple validation of this theorem because it is a powerful theorem. 

Let us look at one bar. Let us look at it in system I where you have a statically admissible 



force field. You have forces F1 and F2 and you have an internal force at any location N. 

Theoretically, that force can change along the length of that bar N of x. Simple 

equilibrium demands that for the overall free body, F1 and F2 must be equal and opposite 

to each other and the internal force in that bar must be a constant and equal to this 

external force. Let us say that that force is P; so, N of x is constant and it is equal to P. 

This is the complete information as far as the force field is concerned. 

If you want to express in terms of boundary conditions, the axial force – the internal 

force at x is equal to 0 must be equal to plus F1 and the internal force at x is equal to L 

must be equal to plus F2; F1 and F2 must be numerically equal to each other. Now, let us 

look at another field, a completely independent field in the same bar; we are looking at 

the displacement field here. Let us say that the left end of that bar moves to the left by an 

amount D1 which is conjugate with F1 but not related to F1 by cause-effect. Similarly, 

the right end of that bar moves to the right by D2, which is conjugate with F2.  

Let us say that any point in that bar located at x moves axially by a distance U of x. You 

know that we commonly use U, V, W in the Cartesian space system to relate to 

displacements in these three directions: along x, y, and z. Let us just take some random 

variation in U. Let us say you heat that bar and you have a different temperature at 

different locations; it is possible to get this kind of variation.  

The compatibility requirement is that you must not have a break in the bar anywhere, 

which means that the curve should be continuous and there must be a compatibility 

relationship of U at x equal to 0 being equal to minus of D1 and U at x equal to L being 

equal to plus of D2. This is the complete displacement field. It is kinematically 

admissible and we will check out and see whether the principle of virtual work operates 

here or not.  

This is the external virtual work product: F1 D1 plus F2 D2. How do you write the 

internal work? You cannot write it so simply because at every location x, the value of 

both U of x and N of x can change and so you have to do an integration. You have to 

take a small element D x and it will look like this. Now, work is given by the axial force 

N of x and the change or the local elongation at that point which comes when you 

integrate the strain.  



The strain is U dash of x dU by dx and so this is the expression for the internal virtual 

work. If you invoke the expansion of that integral and you apply the limits 0 to L, I think 

you are familiar with this, it will take this form. You have N of L into u of L minus N at 

0 into u at 0 minus integral u dN. Now, because there is no change in N along the length 

of this particular bar, that last quantity will vanish; it is equal to 0.  

If you now apply the boundary conditions of N of L, u of L, N of 0, and u of 0, you will 

find that you get exactly the same expression as for external virtual work. This is a 

beautiful validation. You can clearly see there is no relationship between the axial force 

distribution and the axial deformation distribution. A similar proof is possible when you 

bring in bending and shear forces. The proof is available in the book Structural Analysis. 

(Refer Slide Time: 13:48) 

 

Now, let us apply this principle. You are familiar with the unit load method; let us use it 

first for finding an unknown displacement. What we traditionally do is we apply a unit 

force in the direction and at the location where we want to find the displacement. So, if 

you want to find Dj, you have to apply Fj and it is convenient to apply Fj equal to 1. You 

have a geometry problem. You have a real displacement field and you are creating an 

imaginary force field which you can analyze. In other words, you are using statics to help 

you solve a problem of kinematics. We are using the principle of virtual work because 

we are using work as a bridge that connects the force field with the displacement field. 



Now, if you do this product, you will get 1 into Dj as the total external virtual work 

because there is no other joint, no other force acting which moves and the total internal 

work is nij. That small nij is defined here as the axial force in the element i caused by Fj 

equal to 1 – that is a notation we will use consistently – and ei is the elongation in the i th 

bar. Is it clear? Those arrow marks should make it clear.  

If you look at this, this is nij in the i th bar and this is ei in the i th bar (Refer Slide Time: 

15:26). We are just multiplying them for all the bars and summing over I; it does not 

matter what caused the displacement. If the displacements were caused by the 

application of loads on the truss, then you can get bar elongations from the axial forces in 

that real truss by multiplying ni with fi. 

What is fi? It is the axial flexibility in the truss; we have already seen this. This fi is 

equal to Li by EAi (Refer Slide Time: 16:04). We assume that all the bars have the same 

material and so the e value should be common; if it is not, you can account for it. So, you 

have this formula Dj is equal to nij into fi into Ni. The original formula is 1 into Dj. It is 

important to remember this because sometimes people remember only the formula. Then, 

you run into the problem of dimensional non-homogeneity because you will find that the 

right-hand product does not really match in terms of units with the left-hand product. 

This is the big picture and you can apply this to find any unknown displacement or you 

could use it to find a flexibility coefficient – we will see this later. You can have two 

kinds of problems: problems in which you just have a geometry change caused by an 

environmental effect like temperature change or a lack of fit in a truss or you could have 

it for the more common application of finding an unknown displacement in a loaded 

structure.  

Now, if you are finding the unknown displacement ((.)) loaded structure, here we are 

making an assumption of linear elastic behavior because the modulus of elasticity comes 

in here; so, you will get this form for a truss. You can now pull out the definition of 

flexibility coefficient from here. How would you define fjk?  



(Refer Slide Time: 17:45) 

 

fjk is defined as…. Is it a force or is it a displacement? This is a flexibility ((.)). Is 

flexibility coefficient a force or a displacement? It is a displacement. This is the 

displacement at the joint coordinate j due to the application of a unit load at the location 

k; at all other coordinates, let us say l not equal to k, there should be no load. There 

should be only one load at a time and while we are at it, we will also define the stiffness 

coefficient. We will be coming to this again and again and so we might as well look at it 

now.  

We use a symbol k to refer to the stiffness coefficient and let me take j, but I will avoid k 

because it is a duplication. I will say jl. What is this? This is the force at the location j 

due to a unit displacement. Here, we have a unit load or unit force, whereas here we have 

a unit displacement at this location; this is a unit displacement (Refer Slide Time: 19:39); 

that displacement for a truss is a translation, but in a beam you could have a rotation. It is 

complete only if you take other joints, let us say, m not equal to l; all other displacements 

should be arrested, which means you are dealing with a somewhat different structure.  



(Refer Slide Time: 20:07) 

 

The important point to note in all these notations is this is the effect; this is related to the 

effect and this is related to the cause (Refer Slide Time: 20:13). You get this 

displacement because you applied a unit load. Similarly, here, this is the effect and this is 

the cause. Is it clear? Now, is there any relationship between these two? 

(Refer Slide Time: 20:38) 

 

Is it right to say that the flexibility coefficient fjl for a given structure is the reciprocal of 

kjl (Refer Slide Time: 20:52)? Is this right? That is what one of you suggested. Is it right 

or wrong? After all, we have been told that one is the reciprocal of the other. Is it true? 



This is not true. Why is it not true? This is wrong. What is true is that the flexibility 

matrix is the inverse of the stiffness matrix and that does not mean this. We will study 

this in more detail in the next module.  

(Refer Slide Time: 21:30) 

 

This can be applied to finding trusses. Here is an example of indirect loading. Let us say 

you have a lack of fit and two of the bars have a change in length. The bar number 6 has 

been manufactured and came with a length which is 5 mm more than its desired length 

and the bar number 9 is too short by 3 mm; so, you kind of fit things together. Will you 

get any internal forces when you do this? No, because you have just a rigid system. The 

bars will just move about a little bit and there will be no support reactions – no internal 

forces, but if the structure was over-rigid, it is possible that you have support reactions 

and you have a self-recuperating system.  

Now, the question is: can you find the horizontal deflection D11? How much will that 

joint move to the right? This is D11. How do you find it out? Apply a unit load exactly 

there and analyze the system. When you analyze it, you quickly realize that if you put a 

unit load there, you will get a unit force in the bottom three bars and you will not get it 

elsewhere; it is very easy to analyze. You invoke the formula 1 into D11 is equal to the 

total internal work. The internal work relates to only the bottom three bars because all 

the other bars do not have any force; actually, it works out to be the sum of the 



elongations in those three bars. It makes sense; that is how the roller support will move; 

it is very easy to calculate.  

If you have another example where the problem is that you are given a truss with some 

actual loads on the truss, say a 50 kilonewton load in the middle and 40 kilonewton 

horizontal load, you need to first analyze this truss, find the bar forces, and then for each 

bar, find the bar elongations by multiplying each bar force by its flexibility. That is easy 

to do. You do not need to go through the full exercise because only three bars really 

matter here. 

Finally, you need to multiply with this, this, and this (Refer Slide Time: 24:03) because 

all the others do not have any force ni. So, if you want do it fast, you just find the forces 

in the bottom cord and you can do that. Let us say these are the answers. Then, you can 

just multiply each of those by 1 and then the flexibility value and you will get the answer 

very easily. Is it clear? It is a simple demonstration. You can also apply this to beams and 

trusses. This is something we have finished. 

(Refer Slide Time: 24:48) 

 

Let us apply this to beams and frames. Let us say you have a bar; you have a cantilever 

beam and that beam bends for some reason. Let us say it is bent because the temperature 

at the top is less than the temperature at the bottom and you have a linear gradient in the 

temperature. So, it will naturally take that curvature. The question is: can you find the 

vertical deflection? 



Is there any method that you already know other than the virtual work method where you 

could solve this? Energy method we have not yet done. Conjugate beam method. 

Conjugate beam method because you remember on the conjugate beam, the fixed end 

become frees and the free end becomes fixed. What is the loading you put? There is no 

bending moment here. That is how students normally remember; they remember that you 

have to put an M by EI diagram. No. You have to put the curvature diagram. If the 

curvature is caused by a bending moment, you put the M by EI diagram; if it is caused 

without the bending moment due to environmental change, then you put the phi diagram, 

the curvature diagram, which is 1 by the radius of curvature. Is it clear?  

If the radius of curvature is known, then that is what you put. So, you can do the 

conjugate method. Let invoke the principle of virtual work. Please note: in these 

applications, we use the word principle of virtual forces because your force field is 

virtual and you are imagining; you are constructing, you are cooking up, an imaginary 

force field to help you find an unknown displacement. 

(Refer Slide Time: 26:29) 

 

What do you do if you want to note the vertical deflection? Upward, you put a unit load 

exactly where you want the deflection and draw the bending moment diagram; we use 

the notation small m just as we used this notation small m earlier (Refer Slide Time: 

26:47). Small m1 means bending moment at the location x due to fj equal to 1. This 

diagram is very easy to construct. Then, you invoke the principle of virtual work. The 



external virtual work is straightforward: 1 into Dj. The internal virtual work is actually a 

product of moment times rotation, but since the moment is changing from point to point, 

you need to integrate and you have to find the change in rotation.  

(Refer Slide Time: 27:27) 

 

The change in rotation is given by d theta and d theta is given by curvature into dx; that 

is what we do; that is the integration we need to do; you can do the integration.  

(Refer Slide Time: 27:43) 

 

In this case, it is straightforward. If you take x from the right to left, it is convenient. The 

bending moment at any location is x; the curvature is 1 by R, it is a constant; so, you are 



actually multiplying the triangle with a rectangle. It is very straightforward to get the 

answer. Let us take the same problem and imagine that this has happened because you 

applied a concentrated moment at the free end. Agreed? So, it will lift up.  

Now, the cause is not environmental change, but it is a deliberate action caused by a 

load. Then, the curvature 1 by R is given by what you said earlier – it is bending moment 

divided by EI. The bending moment is constant everywhere because it is a case of 

uniform bending – pure bending. You get exactly the same answer except that instead of 

1 by R, you will write it as Mnaught by EI. Is it clear? It is simple.  

You have two kinds of applications: one, where it is a pure geometry problem and there 

are no forces involved; the second, you might tend to get confused, there are forces 

involved, but you are looking not at the force field – you are looking at the displacement 

field. It is still a geometry problem, an unsolved geometry problem, but you get some 

parts of that displacement field – for example, here, the rotations, the curvatures and 

there are some parts which you do not know, like the joint displacements. To find the 

unknown joint displacements, you are invoking the principle of virtual work. 

(Refer Slide Time: 29:27) 

 

For beams and frames, this would be the formula that you would use. If you want to find 

Dj, the displacement or deflection at a coordinate j, then it is integral mj into phi of x into 

dx. If the phi is caused by a bending moment, then it is M by EI; very simple and 

straightforward. If you look at it carefully, you are really multiplying two diagrams; you 



are multiplying a curvature diagram, which is real, with a moment diagram caused by a 

unit load, which is virtual.  

If you look at that integral, you can see that it is really a volume and you can invoke 

what is called the area multiplication method by taking a slice of that volume. You will 

find that the local elemental volume is dV; it is mj of x into phi of x into dx. It is very 

easy to understand this. Actually, you are integrating over the length of that element. Is it 

clear? You can do this. You can do it in a simpler way if you have laid down the curved 

portion. 

The interesting thing is one of those lines will be straight. Which one will be straight? mj 

will always be made up of straight lines because in a beam when you apply a unit load, 

you can get a straight line bending moment diagram. mj is always straight; so, it is 

necessary to realize that your ordinates should be linear. Put that on top and the curved 

diagram, which comes from the curvature... The curvature could be straight or could be 

curved; in general, it is curved.  

Put that on the ground, lay it down flat, take that area, and find out the location of the 

centroid of that area; the ordinate of m of j, mj at that location, is the average height. So, 

you can reduce this problem to multiplying the area of the curvature diagram by the 

height at its centroidal location; this gives you quick solutions. 

(Refer Slide Time: 31:36) 

 



There are many examples; you have studied them last semester. One of the most 

common examples is when you have to multiply two trapeziums. Let us say the 

curvature diagram is also a linearly varying diagram. Then, you can either.… It does not 

matter which you put on the ground because you get an accurate answer either way and 

this is the solid that you get (Refer Slide Time: 32:00).  

The formula you have to remember when you deal with a situation like this is V is equal 

to L by 6 into phi1 into 2 m1 plus m2 plus phi2 into 2 m2 plus m1, which is easy to 

remember. In case you forget and you flip it over, you will still not make a mistake. It is 

L by 6 into m1 into 2 phi1 plus phi2 plus m2 into 2 phi2 plus phi1. This is a very useful 

formula; it works even if some of those values are negative. As long as you have one 

equation for that trapezium, it will work. If one of them is a rectangle, you do not need to 

use this formula; if one of them is a triangle, you do not need it. You can have simpler 

methods. 
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Let us take just one example and see how it can be applied. This is a little difficult; it is a 

simply supported beam with an overhang subjected to some arbitrary loading. The 

question is: can you find the deflection at the free end? You have to draw the bending 

moment diagram and it is good to separate out the curved part from the straight part. 

There are some shortcuts involved and I suggest you go through it carefully; you have 

done this last year. 



The capital M diagram is a bending moment diagram in the real beam, but we are not 

interested in the capital M diagram; we are interested in the curvature diagram, which is 

the M by EI diagram. Once you have capital M, if you divide by EI, you have got the 

curvature. To find the unknown deflection at D, you need to apply a unit load F1 equal to 

1 to find D1. When you do that, that diagram is made up of straight lines; that is your m1 

diagram.  

This is what you need to do (Refer Slide Time: 33:53). You need to find delta by 

multiplying that m1 diagram with the capital M diagram. It makes sense to separate out 

the curved part from the straight line part. If you work this out using the formulas we 

derived, you will get the correct answer. But just to go through this once again, this 

curved part has a maximum volume in the middle – 27 kilonewton meter (Refer Slide 

Time: 34:18). It is a parabola; so, the area of the parabola is two-thirds that of the 

equilateral rectangle. 

This length is 3 meters (Refer Slide Time: 34:29). So, it is two-thirds into 27 into 3 and 

that is the area. Its centroid is at this location (Refer Slide Time: 34:38), where the 

ordinate here is minus 0.5; so, you multiply by minus 0.5. Then, this difference is 124; 

so, the area of the triangle is half into 124 into 3. The ordinate of this – the centroid of 

this – is at a distance of two-thirds from here; so, it is two-thirds into minus 2 by 3.  

You can work it out and you will find that the value here is minus 2 by 3 and so on and 

so forth. You need to complete this product. Be careful; just look for equations. If you 

have a single equation for a certain length and you are multiplying with another equation 

for that entire length, you can do it together. But, if you have a break in the line, then you 

must restrict the integration to that region where you have the change in the slope. Work 

this out and you can get the answer. In this case, that is the value that you get. 



(Refer Slide Time: 35:47) 

 

If you need to find the slope, you do the same thing, but now, you put a unit moment and 

you get this shape. Then, you can work out the answers; it is similar; you get something 

in radians. 

(Refer Slide Time: 35:56) 

 

A more complicated problem is a frame; that is a cantilever frame. The question is: can 

you find D1 and D2? You have done this last semester; so, I will just go through the 

concept. What do we do? We first generate the bending moment diagram and doing this 

needs some skill, which you should have got by now; you must know how to analyze 



statically determinate structures. Draw the bending moment diagram on the tension side. 

We are not so much interested in the bending moment diagram as in the curvature 

diagram. So, if you divide this by EI, you have got the curvature diagram. The formulas 

to get D1 and D2 emerge from the unit load method. 

(Refer Slide Time: 36:48) 

 

First, to find m1, you apply F1 equal to 1 and you need to draw correctly the small m1 

diagram, which is caused by the unit load; it is a virtual force field. To get m2, you have 

to apply F2 equal to 1 and you get another diagram. Once you have got these two 

diagrams, then you have got the capital M diagram. It is a question of integrating, but 

you will find it is much easier to do the area multiplication using the volume integral. 



(Refer Slide Time: 37:17) 

 

Let us take the first case. On the left side, you have the capital M diagram and on the 

right side, you have the small m1 diagram; you need to multiply one with the other. In 

this case, both are made up of straight lines. It is very easy to do it and I leave it to you to 

work out the calculations. You can use that formula for the trapezium and you will get 

the answers very quickly. That is the first deflection. 

(Refer Slide Time: 37:45) 

 

For the second one, m2 will change. You repeat the same process to get the horizontal 

deflection. This needs some exercise. Once you practice a few problems, you will be 



very comfortable doing this. So much for the principle of virtual forces. What was the 

purpose of principle of virtual forces? Mainly to find some unknown displacement in the 

real displacement field. Now, we look at a less-used version of the principle of virtual 

work; Bernoulli's theorem originally dealt with this. 

We are now looking at the force field which is statically admissible and you want to find 

out some unknown quantity in that force field. You might ask why we should struggle 

and do all this. Why do you need to use kinematics to find a static solution? Can we not 

do it directly? Yes, you can. If the system is statically determinate, you can directly 

invoke equilibrium but you will find there are some situations, for example, in a situation 

where you have multiple internal hinges, you will find it is much easier to invoke this 

principle. It is also called the dummy displacement method, but you could call it the unit 

displacement method like the unit load method when you put that dummy value equal to 

1. 

(Refer Slide Time: 39:08) 

 

Here, let us say you want to find an unknown force or you want to find a stiffness 

coefficient. Let us say you want to find Fj. You want to find the support reaction in this 

truss when it is subjected to this kind of loading. What you do is you give it a dummy 

displacement Dj equal to delta. It will rotate about the left support; so, you have rigid 

body movements. It is possible for you to figure out how much those locations where 1, 

2, and 3 are applied will move. Once you know those values D1, D2 and D3, you can 



invoke this theorem. They are rigid body movements and so it is easy to calculate. The 

total internal work in such problems turns out to be 0. Why is it 0? Since you have rigid 

body movements, you do not have internal deformations in those bars. It is 0 because the 

internal displacement in the displacement field is 0 not because there are no internal 

forces in the real force field. Is it clear?  
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You invoke this and you can solve this problem easily. Let us demonstrate this with a 

problem where you have an internal hinge. At the left edge, it is not shown; at the left 

edge, you have a fixity. In this figure, please note there is a fixed end support at A and 

you want to find these reactions. What you see on the right side is the free body of the 

force field; the force field is real.  

If you want to find the left reaction VA, what you do is you lift it up by delta, but lift it 

up in such a way that the fixed end moment MA does not do work; it must remain 

horizontal; you will find this is the only way you can draw the deflected shape. This is 

visualizing the deflected shape. Then, if you want to find the moment at A, MA, you give 

it a rotation theta, but you should not allow any other movement. When you invoke the 

principle of virtual work, there should be only one unknown at a time, which means the 

other forces should not do any work; that has to be done cleverly. Then, if you invoke the 

theorem, it is very easy to compute the reactions. 
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You can also do it in a truss. Let us say you want to find the reactions in a truss, this 

particular example. This is a tricky thing; not the reactions – reactions are easy to find; I 

want to find the actual force in AB. What should I do? Well, I should now have an 

elongation in that member AB. If I have any elongation in that member AB, this is the 

way to do it. Let it elongate by delta, but if I keep this B here (Refer Slide Time: 42:22), 

I have a problem because I will also be elongating the bar II, BC. I do not want that; I 

want BC to remain unchanged in length. It means I take C as center and draw an arc or a 

tangent; for small deformations, the arc can be replaced by a tangent; so, B moves to B 

dash.  

In this configuration, the advantage is the only change in length is in AB and it is equal 

to delta. You have to work out the trigonometry part of this and find out how much the 

joint C has moved horizontally and vertically; this can be done. Once you have done this 

correctly, simply invoke the theorem and you will get the answer. It is a powerful 

technique. You might make mistakes if you are not careful with the trigonometry 

involved. 
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Last application of finding a deflection in… I want to show you that this can be also 

applied to a statically indeterminate problem – finding deflection in a statically 

indeterminate problem. Here, you have a fixed-fixed beam and the question is can you 

find the maximum deflection at the mid span in this beam? What do you do? First of all, 

you need to have the curvature in this system. You need to know the fixed end moment; 

you can use the conjugate beam method and find the fixed end moment. 

What is the fixed moment? qnaught into l square by 12. I have separated out the distributed 

load defect and the fixed end moment effect? The m diagrams look like this. You have a 

parabolic sagging bending moment diagram qnaught into l square by 8 and superposed on 

that, you have a constant hogging moment, which is qnaught into l square by 12. Now, to 

find delta in the middle, what should we do? What should we do? Which theorem will 

we invoke? Which principle will we invoke? Principle of virtual work? You can do 

conjugate beam method, you are right, but we are now on the topic of virtual work. 

Virtual force or virtual displacement? Virtual forces. What will you do?  

What we have here is a real displacement field. If you divide M by EI, you have got the 

curvature diagram. What you need to do is virtual force; this is what you should do; this 

what everybody does but there is a problem with this. The problem with this is you are 

again dealing with a statically indeterminate structure and you need to spend some time 

to figure out the small m diagram for this. Is there a way out which is easier? This really 



brings out the power of the virtual work. Is there an easier way? Yes and I want you to 

see this.  

Let us say, the degree of static indeterminacy of this structure is 2; that means treat the 

cantilever as the primary structure and why can I not take any value of X1 and X2? I can, 

because if you recall the origin of the principle of virtual work, the only requirement is 

that the force field is statically admissible. Now in a statically indeterminate structure, 

how many force fields can you generate which are statically admissible? Infinite. Only 

one of them will be exactly correct for the boundary conditions that you have given. So, 

the unique solution is one which also satisfies kinematics, but we are not interested in 

finding the kinematically correct solution also, because this is just a device to help us 

find an unknown deflection. 

All we need is any statically admissible solution. You would find that if I conveniently 

take X1 and X2 equal to 0, I have got a cantilever; I have reduced that fixed-fixed beam 

to a cantilever beam with a concentrated load in the middle, a unit load, for which the 

small m diagram is child's play; it is a small triangle; it is a small triangle and it is minus 

L by 2.  

Now, will you try this out on your notebook? Can you get the deflection at the mid span? 

I will help you; just check out the solution. You are multiplying this triangle with these 

two diagrams. One is a parabola and one is a rectangle. Let us take this area. What is the 

area of the parabola? Let us do this rectangle first (Refer Slide Time: 47:44). You are 

multiplying this rectangle with this triangle. Do you agree that the area is half into L by 2 

into the ordinate because you can take that full area of that triangle and any value of the 

ordinate here? Do you agree to this part? Now, we need to multiply this parabolic area. 

What is the area? Two-thirds of qnaught into L square by 8 into EI into L by 2; L by 2 is 

outside here. Its ordinate will be located at a distance of how much? 
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You know that if I have a parabola like this, the centroid will be located in such a way 

that these distances are.… If this length is l, or let us say a, how much will this be? 5 by 

8 into a; this is 3 by 8 into a. That is how you get the ordinate in this triangle as 3 by 8 of 

L by 2. Agreed? 3 by 8 of L by 2. Now, you must be careful about the signs. This 

product will be negative because you are multiplying something positive with something 

negative (Refer Slide Time: 29:01), whereas this product will be positive because you 

are multiplying a negative with another negative. Clear?  

Just check this out. The answer is 1 by 384 into qnaught into L raised to 4 by EI. Just pause 

for a while and see if the beam is simply supported, what is the deflection at the mid 

span? It is 5 by 384. So, making it fixed and giving it some hogging moment actually 

reduces your mid span deflection to 20 percent of the original value. In reality, many 

systems are partially fixed; so, the answer is between these two extremes. Now, what is 

extremely interesting is you could have chosen any statically admissible diagram.  
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We will just see an alternative where we will treat the primary structure now as simply 

supported. That means here X1 and X2 are 0. Now, I am dealing with a simply supported 

beam and my small m diagram has changed completely. If I do the multiplication, you 

can check this out, I get exactly get the same answer. This is really a mind-blowing 

discovery; it shows the real power of the principle virtual work.  

What are the implications of this? You take a complicated structure, a multistoried 

frame. If you have the bending moment diagram in any one beam for example, that is 

enough for you to help you get the deflection in that beam because you can strip it off 

from the rest of the structure and make it statically indeterminate and apply the unit load 

method. Similarly, we will see this later, you can find the drift in a tall building very 

quickly by invoking this.  

We will stop here and we will continue in the next class. Can you just name the work 

theorems? There are three work theorems. Castigliano's theorem. Castigliano's theorem 

belongs to energy methods. Work theorems, three of them; they are applicable to linear 

elastic structures. 
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They are Maxwell's Reciprocal theorem, then Betti's theorem, and Müller–Breslau's 

principle. We will see this in the next class. Thank you. 
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