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Good morning, this is lecture number 35.  
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We are still with module 6  - Matrix Analysis of Plane and Space frames. 
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If you recall, in the last class we had covered the conventional stiffness method. So, in 

this session, we will look at the reduced stiffness method, as applied to plane frame 

elements.  
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This is covered in the chapter on Plane and Space Frames in the book on Advanced 

Structural Analysis. 
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So, I keep showing you these maps, because I want you to see how the system of 

analysis is the same; the structure is changing, but the methodology is not changing. We 

saw how well it worked for the simplest type of axial element; then, we worked with 

plane trusses; then we worked with space trusses; then we worked with beams; then with 

grids, and now, with plane frames, and in the next class, or the class after that, with space 

frame. 

So, we are covering all kinds of skeletal structures, and you can clearly see there are two 

broad methods: There is a stiffness method which is preferred for programming 

compared to the flexibility method. In the stiffness method itself, you have the 

conventional stiffness method; you have a simplified formulation called, the reduced 

element stiffness method, and that is a method that we are going to discuss in this 

session. 
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If you recall, this is the 6 degree of freedom plane frame element that we used for the 

conventional stiffness method. This is a large matrix and it is a singular matrix. What is 

the rank of this matrix? 3, and one way of understanding why the rank is 3, is because 

you have, mathematically, you have 3 dependent rows or columns, but physically, what 

does it mean? Physically For a stiffness matrix to be non-singular, what you have to 

make it is, you have to make the element stable. 

Now, a singular stiffness matrix still works in a global scenario because your structure is 

stable. When you assemble the structure, stiffness matrix - the k a, a is non-singular, but 

here, you can begin with a non-singular element stiffness matrix by giving how many 

restrains? 3; then only you have stability, and you can choose your type of restraint. We 

have been assuming that the simply supported condition is convenient, and we will stick 

to that. 
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So, we are now going to use a 3 degree of freedom system, and it is very easy to write 

down; at this stage, you should find it very easy to write down the element stiffness 

matrix. You can do it from first principles. 
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You can also do it from the 6 by 6 element stiffness matrix. how Just talk of the 

irrelevant rows and columns; there are 3 dependent rows and columns. If you make it 

simply supported, you will find that the first row is important; the second is not because 

we do not want the shear degrees; just delete the shear degrees of freedom, and you do 



not need 2 axial degrees of freedom. So, that is how, this reduces to this element. It is 

very easy to derive; very easy to remember. E A by L, axial stiffness 4 EI by L, 2 EI by 

L, 2 E I by L, 4 EI by L; is it clear? It is actually a combination of your axial element and 

your beam element. 
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right You can also derive from first principles. You apply a unit displacement, one at a 

time, and you can generate these. This diagram will be very familiar to you now. It is not 

difficult; you can generate the element stiffness matrix. 
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Now, we also need that displacement, the T D matrix that is the displacement 

transformation matrix. Well, we are familiar with this slide because we used this when 

we dealt with plane trusses. The plane frame is advancement on the plane truss because 

in a plane truss, you have 4 degrees of freedom in the conventional system. So, we are 

familiar with this transformation minus cos theta, minus sin theta, cos theta, sin theta. 

And you will recall there are two ways of deriving this. This is the kinematic way, but 

there is also an easy static way, where you get the T D transpose matrix. So, you are 

familiar with this. 
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You are also familiar with what you do for a continuous beam. And if you have chord 

rotations, relative supports settlements, then you have to use this chord rotation which is 

given by 1 by L, and clockwise chord rotations are treated as negative, but the equivalent 

beam and flexural rotations which is 1 by L, will turn out to be positive. So, you are 

familiar with these two; if you put them together, then you get what you need to do for a 

plane frame element with 3 degrees of freedom. 
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You can easily work this out from first principles. What you need to recognize is - if you 

have any of those translations, you have to find out what is the elongation you get in the 

element; right so, it is either cos theta or sin theta. If you get an extension, give a positive 

sign; if you get a contraction, give a negative sign; it is very easy. So, you can generate 

this by pushing one at a time. I have shown here, the translation effects. So, rotational 

effect is very straight forward because there is no transformation required when you have 

a rotation because it is same; you get 1. 

So, let us just look at this. Let us look at the first one; this first column in your T D 

matrix corresponds to D 1 equal to 1 in your structure. So, if you have D 1 equal to 1, 

you need to look at this picture. If you apply D 1 equal to 1, that element undergoes a 

contraction of cos theta; so, it has got a minus sign; that is why, we wrote minus c I; c 

stands for cos theta. 

At the same time, you get a chord rotation. Have you noticed? You get a chord rotation. 

The chord rotation is anticlockwise; the value of the chord rotation is 1 by… not 1; it is 

sin theta by l. right And so, you get equivalent flexural rotation which will be clockwise, 

and that is why, you get minus s i by l; minus s i by l (( )) is it clear? Any doubts on this?  

From first principles, you can generate this; alternatively, you can use a force approach 

and generate this, and find the T D transpose. Did you understand what we did in the 

first column? Yes. This corresponds to the first degree, the axial degree. These two 



correspond to the rotational degree; so, if you have a chord rotation 1 sin theta by l 

clockwise, you will get equivalent flexural rotations minus s by l; is it clear? Like this, 

you can work out for the second degree of freedom. If you take the third degree of 

freedom, it is a rotation D 3 equal to 1; that does not need any transformation here. So, 

corresponding to D 2 star, you get 1. So, 0 1 0; does it make sense? 

That is all. Once you have got the physics in this, you got it. This is the actually not 

difficult to do, once you realize that it is just a superposition of the plane truss element 

and the beam element. We did the same in the beam element. We had 1 by L because 

you did not have sin theta cos theta, but now, your plane frame element can be oriented 

in any direction, and not necessarily align with the global x axes; is it clear? ok 
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So, if you have got this, then we can go ahead. This slide should also be familiar to you. 

These are the shortcuts you will take when you want to avoid considering axial 

deformations. Remember, you can convert; you have to find out the sway degrees of 

freedom, the minimum sway degrees of freedom, and convert them to chord rotations. 

right We had done this when we did the slope deflection method, remember. So, we will 

invoke this concept when we want to do a simplified analysis. 
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This slide is familiar to you. These standard transformations we do in the reduced 

element stiffness method. 
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This step wise procedure for programming is also clear to you. 
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Now, we will take up the same problem we did by conventional stiffness method, and 

you can see, there is a tremendous reduction in effort when you do the same problem by 

the reduced element stiffness method. ok. 

So, we will take this frame, and we will solve it in two ways: One - we will include axial 

deformations; that means we should get exactly the same answers we got by the 

conventional stiffness method. We will also ignore axial deformations, and that reduces 

the problem even further. It is good enough for most practical cases, in which case, the 

solution you will get will be what you would get if you were to solve by the slope 

deflection method or a moment distribution method, and let see, what is the order of 

error that you get, if you ignore axial deformations. So, you have that facility to either 

include or exclude, which you did not have in the slope deflection method; is it clear? 

Let us go ahead. 
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First, you need to do the coordinate transformations. We try to partition T DA and T DR. 

You have to find the equivalent joint loads, if you have a distributed load. In this case, 

you have consecrated load acting in between that beam; so, you have to do this manually 

for reasons we have discussed earlier. You cannot do the T D transpose and get this, 

which you could do in the conventional stiffness method because you had that many 

extra degrees of freedom. 

Then, you generate the element and structure stiffness matrices. Mind you, the matrix 

you get here, the final k matrix is exactly that which you get in a conventional stiffness 

method, but you are working with smaller initial matrices. There is one more thing that I 

think is worth noting; you need not find reactions; if you are anyway, it is a manual 

method. So, you can avoid F R if you want to draw the free body and figure out the F R 

yourself from equilibrium; that option is there in this method. 

So, if you want you can find the support reactions along with the unknown 

displacements, and you need to find the member end forces. This last equation is similar 

to your slope deflection equation; except that, you are now including the contribution, if 

any of axial deformations right ok. 
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So, first, we will do the coordinate transformations. In this portal frame, we will use 6 

degrees of freedom for the same 6 active degrees of freedom, which we did earlier, and 6 

restrain degrees of freedom; the loading input is the same; F 1 is 50 kilo newton and D 

11 is minus 0.10 kilo newton. Remember, we did the same frame with and without an 

internal hinge. We will also do the internal hinge in this case, and show you that you can 

solve the problem. 

Now, you are dealing with three elements, and each of those elements has 3 degrees of 

freedom; 1 star corresponds to the axial degree; 2 star corresponds to rotation at the start 

node; 3 start rotation at the end node, and you can choose your start and end as you wish. 

In this case, you can see that, for elements 1 and 3, I have chosen the start node at the 

bottom.  

You have to generate this matrix; give it a shot; what is a size of those matrices for each 

element? What is the size of the T D matrix? 3 by 12? 3 by 12. right Let us do it 

together. 

We will demonstrate for 1 or 2 rows so that you get the hang of it. It is 3 by 12, and you 

can partition it where you separate the active degrees of freedom from the restrain 

degrees of freedom. Let us go through it; let us do a few of them. 



Let us take the first one. If you apply D 1 equal to 1 in the structure, but do not allow any 

other rotation to take place, what do you think will happen? Well, clearly, this element 2 

will undergo a contraction. So, you should put this as minus 1. right Nothing happens to 

element 3, and there is no bending in element 2. 

So, straight away, you know that this is minus 1; this is 0; this is 0 0 0 0; got it? Now, 

what about element 1? Element 1 is going to undergo a clockwise chord rotation, but no 

change in elongation or extension. So, clockwise chord rotation, anticlockwise end 

rotations. So, it is, the rotation is 1 by 4; got it? 

So, it is plus 1 by 4 plus 1; very easy to do because you are lucky. You have a reticulated 

frame where the angle is 90 degrees. If it is not, put cos theta sin theta the way (( )). By 

the way, in the in the book, examples are given with lot of inclined cases. You can go 

through it, but we will also do an inclined sloping legs problem. 
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Take D 2 equal to 1; very easy if you lift up D 2 equal to 1; only element 1 will be 

affected (( )) get it. 

So, can you work this out yourself, or you should be go through all the column; what do 

you say? You are IIT student; you are bright guys. Except that you have to go back and 

do your ground work, this is easy. We are only looking at concepts. Now, we are not 



going to sit and solve every second digit, but you got a method. It is very clear. You have 

got assignment problems where you really need to sit and solve. 

So, my suggestion is - go through it carefully and do it; there is one more suggestion, I 

can give you. If you want to minimize your work manually, you can throw away half that 

matrix. You can throw away all the restrain coordinates because you can get those 

reactions from the member end forces anywhere. right Then, your size becomes much 

easier and it is full of 0s. So, you just have to fill, in fact, when you program it. you It is 

got null; it is a null matrix; then, you fill it only where you need to fill. 

(Refer Slide Time: 17:06) 

  

So, it is very easy to actually programming. So, you know how to get the T D matrix for 

a plane frame fixed end forces. We have done this before. So, these are your local 

coordinates; the elements 1 and 3 do not have any loads in between. So, it is 0 

kilonewton; 0 kilonewton meter, 0 kilonewton meter. Remember, 1 star corresponds to 

an axial force; 2 star and 3 star correspond to the end moments; there is no fixed end 

force for the first and third element. Only for the second you have, and you have to be 

careful with them. 

We have done this calculation in the conventional stiffness method. So, I would not 

repeat it, but it is important to work out those vertical reactions in the conventional 

stiffness method. Those vertical reactions went into your fixed end force vector because 

you had some coordinates. There you had 6 degrees of freedom; here you have only 3 



degrees of freedom, but you still need to work out the vertical reactions. Why you need 

the vertical reactions? No. No, because each independent is treated separately till you put 

it all together in the structure. So, that answer is wrong. 

You are finding fixed end forces for element, treating it independently. You do not pass 

on what happened in the second element to the first element, but you do it in the overall 

structure. So, you need that information to find the equivalent joint loads. 

So, even though you are taking shortcuts in reducing the number of degrees of freedom 

element wise, you got to see the big picture, and put it all back in the right place. So, as 

far as your element load vector is concerned, you have only this; there is no axial force in 

element 2. So, 0 kilonewton. The left end fixed end moment is anticlockwise; 88.89 

kilonewton meter. So, it is plus 88.89, and the one at the right end is clockwise plus 

clockwise 44.44, and therefore, minus 44.44; it clear? So, it needs clarity in 

understanding to assign this correctly; otherwise, you would not get the (( )). got it? 
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Now, what do we do? Now, we take this element alone as non-zero fixed end force 

vectors, and when you want to put it on to that structure, you have to do it by inspection; 

use a shortcut method; reduce element stiffness method; you cannot do T D transpose 

and get it. 
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So, it does not make sense to write down your fixed end force vector like this because 

because what are the contributions from the 3 elements? The first and third elements 

have no contribution. right Now, this look at this; this 88.89 matches with this force right 

F 3 F and this 44.44 matches with 6. So, 3 and 6 get those numbers, but then, you have a 

degree of freedom here, 2 going up, and 5 going up. That is why you put 74.04; is it 

clear? 

And it is positive; both are positive; is it clear? That is why you need to calculate those 

fixed end forces. Because once you look at the global coordinates, you are just looking. 

Do I get any contribution from the elements? If I do, put them all together; does it make 

sense? It makes absolute sense totally, rational logical method. 

Only thing, this needs a little input from your side. It is not mechanical, the way the 

conventional stiffness method is. Conventional stiffness method, you can program it and 

just forget about it; do not even look at the physics of the problem, where you have to, 

but that is what makes it interesting. This is good, for human beings should do it; that is 

good for machines. ok 

So, as far as the support reactions are concerned, there is nothing because elements 1 and 

3 are where you have fixity. You have null vector that this is done by inspection. So, you 

got F F A, you got F F R, and you got it by looking at each element separately. Clear? 

Can we proceed? Is this clear to you? ok. 
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What is the next step? No. We still need resultant loads which is actually the same as this 

because you do not you have a 50 kilo newton acting at the third coordinate. So, you you 

do this and you draw, sketch, and the same. Now, this is a structure that I am going to 

analyze and superpose this result with the fixed end force values that I get. This structure 

is loaded with equivalent joint loads and this is identical to my original structure. I have 

got rid of the concentrated load acting in the middle of the element 2. I have replaced it 

with the equivalent end forces; both vertical forces end moment; got it? And what is 

guaranteed? What is guaranteed is the D A vector will be the same, and that is the beauty 

of the equivalents. right ok 

And also, note in this problem, you have a 10 mm settlement. Now, I have given you an 

assignment. The last next assignment where you get two problems only to do; one is a 

simple problem for conventional stiffness method, but I have thrown in a bit of 

temperature because we discussed that in the last class. 

Second is of a funny shape frame; a shape frame like that fixed here, hinged here. So, 

you should take advantage of that hinge and with the support settlement and U D l on 

that beam. So, this is kind of suspended from above, and this is resting on the ground 

below; it is an interesting problem; try it ok. 
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Element stiffness matrices, you know, the formula you know the EI by L. So, this is 

child’s play. You can do this EA by L is also known. So, for the first and third elements, 

it is going to be identical because they are identical columns. Only for the second 

element, it is easy to write always EA by L 0 0 and the rest is 4 EI by L 2, EI by L; very 

easy to write down; mechanically you can do this. 
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What do you do next? You generate the structure stiffness matrix. You do it in two 

phases; first you do this k i T D i for the three elements; all these can be done by matrix 



multiplication. If you are doing manually also, it is not difficult. It is only a 3 by 3, 3 by 

6; then, you add up all the contributions. You do not go have worry about slotting here 

because you got the T D, and you can generate it. 

(Refer Slide Time: 24:05) 

  

It is a big matrix you get; 12 by 2, and low end behold; this is identical to what we got by 

the conventional stiffness method, but the operations involved much less effort because 

you dealt with much smaller matrices. You did not have to worry about the slotting also. 
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So, it is a much more powerful method, and it is including the effect of axial 

deformations, and you are getting exactly the same results. 
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So, the next step should give you also the same result. You will get the same deflections 

and you will get the same rotations. So, you can do that, and we got the same solution as 

we got earlier.  
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A support reaction also is identical. So, these two steps are common to both reduced 

element stiffness method and the conventional stiffness method. And so, you can check 



equilibrium, find out your reactions, make sure everything is okay; find out your member 

forces. 
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Now, this is where there is a slight difference from the previous method. What is the 

difference? You have only three degrees of freedom. In the conventional stiffness 

method, you got everything; you got the member end; moments member end; axial 

forces member end shear forces. Now, you got only three; the rest you got to figure out 

yourself, which is which is ok 
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So the member end shear forces are not directly obtainable as in conventional stiffness 

method, but can be easily computed from the free bodies, applying equilibrium 

equations. So, let see how to do that. So, this is what you get from those vectors. You got 

the two end moments for each of the elements and you got the axial forces. If it is plus, it 

means extension; if is minus, it means it is compression. 

Now, the rest of it, you can get from equilibrium; isn’t it? You take the second element; 

you can get the vertical shear force; so, you do that. That is is one step away; that is it; 

you are ready; bending moment diagram is the same; exactly, what we got earlier. 
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Now, is a interesting step; why should we work so hard with even that matrix? What is 

the advantage of ignoring axial deformations? The plane element reduces to a beam 

element. So, you can work with beam elements, throw away the axial deformation, and 

one way to check the answer is put EA tending to infinity in the problem because then it 

becomes actually rigid and you should get the same result, but your effort required is 

much less in this method. 

So, if axial deformations are ignored, the kinematic indeterminacy itself reduces from 6 

to 3; that is a big reduction. Why does it reduce from 6 to 3? because the columns A B 

and C D will not change in length. So, you got rid of two vertical degrees of freedom at 

B and C, and BC also will not change in length. So, you have only one sway degree of 

freedom. You can choose either the left end or the right end; the choice is yours. The 



deflection will be the same. This is what we did in slope deflection method and moment 

distribution method right. 

So, it is a massive reduction of effort, and let us not waste time in calculating reactions 

through these techniques. So, we do not even put global coordinates for reactions. So, 

from a 12 degree of freedom model and now three degree of freedom model of the 

structure level, it is a tremendous saving in effort. So, the two degree of freedom beam 

elements can be used in place of three degree of freedom frame elements. So, we throw 

away the axial degree of freedom; that is it. 

So, you have 1 star, 2 star, for each of the three elements, and the restrain coordinates are 

not shown as they cannot be included in the simplified analysis. The reason is - once you 

are going for chord rotation way of dealing with sway, then do not bring in do not bring 

in those restrain degrees of freedom; which means, now, how do you deal with the 10 

mm support settlement at D? Do you understand? 

Now, how did you do it in slope deflection method? Let us say, the portal frame D goes 

down by 10 mm; earlier you could handle it because in the D R vector, you could fit it 

in. Now, what do you do in the fixed end force? You have to handle it because if D goes 

down by 10 mm, C also will also go down exactly by 10 mm. If CD is not going to 

change in length, BC will undergo chord rotation, and that can you can get the fixed end 

moments. So, that is the clever way of doing it, and that is what we will do. 

But first, can you write down the T D A matrix? Do not worry about T D R. There is no 

T D R here. Can you write down the T D A matrix for the three elements? What is the 

size of each of them? What is the size of each of them? 

2 by 3. 

2 by 3 right 2 by 3. So, write them down. So, this you should do; no excuse. This is 

simple. Write down the 2 by 3 T d A matrices for the three elements. Well, they are 

identical for elements 1 and 3, they have the same. 

Yes sir. 

They are going to behave identically; is it not? 



Yes sir. 

The start node is the same at the bottom. 

So, reduces your effort considerably. Write them down and tell me the values. Let us 

take the second element; what is it going to look like? What is a T D A matrix for second 

element? Very easy; what is it going to look like? 

0. 

0. 

There is no minus 1; anticlockwise is positive. 

0, 1. 

0 1 0 0 0 1 and for the first, and third element 1 by 4 0 0 1 by 4 1 0; is this clear to all of 

you? 

Not identical. 

They are not identical. Oh yeah, that 0 1 is shifted; yeah, you are right. 

Only the chord rotation is identical; the rotational degree of freedom 3, the global level 

pushes that one to that corner; is it clear? Very easy to do; any doubts? Can we proceed? 
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This is massive simplification; remember where we started? We had that 12 by 12, and 

then I have to explain each column and each (( )). Now, this is child’s play; right the 

tremendous reduction in effort, and so, procedure is the same with much less effort, but 

consideration limited to active degrees of freedom. So, you can cutoff, chop off, some of 

these calculations. First thing, knock off the T D R. We do not need T D R then; just 

need k a a. What is a size k a a? 3 by 3; that is all. This is Nano technology working with 

small matrices and you are still getting good results for actual practice ok. 
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What about the support reactions? Who cares? Throw it off. So, you just need DA; that 

also DA minimal 3 degrees of freedom; plug it in and get it. So, this is what we are going 

to do. So, you have to take care of that 10 mm support settlement in the manner that we 

have did in slope deflection method. So, I hope you are familiar with this calculation. 

You have this additional fixed end moment caused by the support settlement; that 

element will just go down. There is no force in that element. So, you work this out. You 

can find the total fixed end moment. Shall I go ahead because we have done this problem 

earlier? 

So, the first element and third element will have no fixed end moments because they are 

vertical columns. The second element will have fixed end moments caused by two loads: 

one is a direct loading 100 kilonewton; the other is an indirect loading; 10 mm settlement 



in the right; that means clockwise chord rotation of 10 divided by 6000. So, this can be 

done. You got the fixed end force vector; what do you do next? 
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You get the resultant load vectors in the same manner, and here, you do not worry about 

those concentrated loads, as we did earlier, because they are not going to affect the 

displacements because they actually rigid. So, even if I put them, it is not going to make 

any deflection; it does not cause any axial deformation. Is it clear? 

(Refer Slide Time: 34:00) 

  



So, I do not even need to do that exercise, and so, this is identical to slope deflection 

method, but you made an assumption. Assumption is - axial deformations are negligible. 

How? Through That is, for this problem, we will know shortly. So, you have got these 

moments. So, your problem is now reduced to this problem 3 loads; no vertical loads. 

Element stiffness matrix is very easy. What is it? 4EI by L, 4EI by L, 2EI by L, 2EI by 

L. 

So, that is easy. You can do it or you go back to your previous 3 by 3, and knock off that 

EI by L row and column; first row (( )) you will get this. So, no big deal; structure 

stiffness matrix same procedure you generate. Will this structure stiffness matrix be the 

same as what you got earlier? Will it be the same? Yeah. First of all, it would not be 

because first of all the size is different. Well, this is 3 by 3; that was 6 by 6. So, this is 

Nano. We are playing very small and you have got these values. They are, the units are 

same for all the components in the stiffness matrix. 

No. 

No. No. For your translation, your rotations, that is why I do not write any units outside. 

So, do not do that. There are no common units here. How do you find the displacements? 

Same method; you get some answers. right. 
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Now, it is interesting to check, whether these answers, these deflections are what you got 

when you considered axial deformations. This is what we are getting now, and it is pretty 

good. This is the exact solution – 13.37mm is what you get when you ignore axial 

deformations, and it is the same left end right end because we are assuming that beam 

will just move like a rigid body, but the exact answer is 13.39 mm and 13.33; is it okay 

as an engineer? Civil engineers make errors in the order of meters. So, compared to that, 

you know, .03 mm error is nothing; not only that, in practice, you must take all these 

solutions you get from the computer with the big pinch of solved. The reason is - so 

many unknown parameters are there. First of all, you have written a load of 50 

kilonewton. Where did you get it from? From the wind; sorry, wind is very uncertain 

right. 

So, there are so many uncertainties involved. You have to have a probabilistic look at the 

whole picture. You should also know what is a kind of material that you are using and 

what is the who is going to build the structure, but that is no excuse for an analyst; an 

analyst should say - you give me whatever you give me; I will give you to the level of 

accuracy that, and I should know what is that percentage of error involved. So, analysis 

is one thing; design is another. For design, you have to be very practical, but we are civil 

engineers, while we do structural analysis. So, we are quite happy with in fact, we know 

that the 13.37 could in reality be actually 15 mm; it is ok. 

So, did I tell you that joke about 2 plus 2? No, then what is 2 plus 2? The answer 

depends on who you are. If you are If you are a mathematician, what do you think? 2 

plus 2 is? What is the answer that mathematician will get? If you are a bad 

mathematician as you are, you will say 4, but if you are a good mathematician or 

professor of mathematics, you will never give anything that is our practical value to 

anybody. So, you will quote a theorem saying that, if there are two real numbers, if they 

are adding up, and you will give the lemma which says it can and you can plug in your 

numbers if you are interested because you are interested in the algebra. So, that is the 

mathematician. 

If you ask a good a good civil engineer, what is 2 plus 2? What do you think good civil 

engineer… 

(( )). 



Ah. 

4 plus or minus 2, 4 plus or minus 2. 

Then you are a bad civil engineer, but at least you did not say 4, but you depends on 

what kind of errors you are willing to tolerate. So, I would say, most good engineers 

would say something; say between 3.5 and 4.5. That is not as bad as 2 and 6; 3.5 and 4.5 

- why do you say that? because you know jolly well that you will never get 2 plus 2 to 

begin with the 2 itself will have (( )). But the joke is not on the civil engineer; the joke is 

on lawyers and charted accountants. If you ask this question to a lawyer or a charted 

accountant, what do you think will be the answer? 

[Noise] 

What do you wanted to be? 

And if you say, you want it to the minus 320.6, they said. 

So, be it my consultancy, if he will be this much. 

And you will hire the mathematics professor and the civil engineer to to prove to you 

that 2 plus 2 is minus 325. 

So, be a good civil engineer and appreciate the abnormity of the errors. 
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Member end forces, you get these, mind you, you are getting only the moments, and 

what do you do with those moments? You have to generate the axial and shear forces 

which you can from the free bodies. You will get some difference from what you got 

earlier surely you are right, but you are really and you can work work out the the shear 

forces and axial forces from equilibrium. 

First, you get the shear forces. Then, you get the axial forces. Then you draw the bending 

moment diagram. Now, this is interesting; who cares about deflection? I want to design 

my structure for bending. How do these bending moments be compared? And you will 

find that this is pretty good. 69.845 is what you got without axial deformation. 69.744 as 

long as it is between 60 and 75, it is… well, you will design it for 70. That is what you 

do and design for 70, and on top of that, they will be factors set degrees.  
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Next topic: How do you deal with moment releases? When axial deformations are 

ignored plane element, plane frame element reduces to a beam element. So, we can take 

advantages of moment release at a hinge hinged end or support, or internal hinge. We do 

what we did for the beam, and it is - you ignore the degree of freedom associated with it; 

modify the element stiffness; 4EI by L becomes 3EI by L, and you have only 1 degree of 

freedom. If the other end is hinge, if it is guided fixed, you know it is going to be EI by 

L. 
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So, we will do this. This is what we have done earlier. Let us demonstrate. Let us 

demonstrate for that same portal frame, with an internal hinge, this is something we 

could not do in the slope deflection method. right We could not do such problem, but 

now, you can, in a matrix formulation. Is it clear? I have taken the same frame. We are 

going to ignore axial deformations; make the life simple, but we have got a hinge. There, 

is it going to make the life more complicated, or its going make it easier; that hinge, it 

should make it easier. So, let us make it easy solution. Procedure is same, coordinate 

transformations.  
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Now, look at the changes we are making now compared to the previous problem is in 

elements 2 and 3. We knock off the rotational degree of freedom at C. So, size of your 

stiffness matrix your T D matrix reduces. You have 2 degrees of freedom for element 1; 

no change there, and you have only 1 degree of freedom for elements 2 and 3, and you 

should release at the right place. Where there is a moment release, there is a hinge 

internal hinge at C, let us see. It matters a little; whether the hinge is internal or at the 

support. Clear? 

How will this change? This is the change. Another thing, you are in your global 

coordinate 3 has gone now because you do not you have you cannot you cannot talk of D 

3 in your structure because you have two different rotations in the connecting members. 

So, you remove it. You do not need to put a clamp here; just remove it silently. So, you 



have only 2 degrees of freedom; a degree of kinematic indeterminacy; only 2 in this 

problem. 

Remember, when we did by conventional stiffness method,  we had 5 with the with the 

hinge; without the hinge, it was 6 here; without the hinge, it was 3; with the hinge, it is 2. 

So, you have D 1 and D 2 in your structure as your unknown rotations; is this clear to 

you? The T D matrix; it just follows from the previous case. Just ignore that rotational 

degree of freedom at c. 
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Then, fixed end forces, what is the change we need to do? Compared to the previous one, 

you have to release at C, the moments. So, you are dealing with the propped cantilever. 

You know how to find out. You know how to find out right for of for that consternated 

load. You know what to do you have to take. Half carry over half, and for the support 

settlement, it is not 6 EI by L squared; it is 3EI by L squared. Is it clear? You know that, 

for a cantilever, that is what you do, and you get the answers. You get the fixed end 

forces; size of a matrix has now come down from 3 to 2 vector, and that is that is what 

you get; your fixed end forces, your nodal forces. 

Your equivalent joint loads are now, that 50 kilo newton was given to you as input. The 

only thing that came extra is that 158.572. So, you are going to get the same response 

with these, as you got earlier. Is it clear? You do not put any vertical forces; you do not 

put any moment at C, but here, you might have a bigger effective of axial deformations. 

The reason is - this frame is very flexible. So, how much it moves will be effected a bit 

by axial deformations. So, let us take a look at what you get. What about your stiffness 

matrices?  
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For element 1, no change. You have the same 2 degree of freedom. Elements 2 and 3; the 

change is 3EI by L. right So, you do that 3EI by L. Write down these values. It is a 1 by 

1 matrix; very easy to calculate structure stiffness matrix you can generate; it is a 2 by 2 

structure stiffness matrix right because you have only 2 degrees of freedom. Find the 

displacements. 
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Now, your deflections are 23.48 and the exact solution is also 23.48. So, this is very 

good. This is excellent solution, excellent answer. I think, the error you get is when their 

legs are inclined in that, I show, there we get very good answers; also, the vertical 

displacement is 10.07 compared to 10 at the bottom. ok 
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So, member end forces calculated; these results also match what you got earlier. 
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Draw the free body diagrams, bending moment diagram. Final comparison, some minor 

error, but certainly, No. No major error; is it clear? So, with this, we have covered 

reduced element stiffness method as applied to frames. Clear? Thank you.  


