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Good morning. This is lecture number 32, the last lecture in this module 5, on matrix 
analysis of beams and grids. With this, we will be completing six sessions on this 
module. The remaining topic is application of matrix analysis to grids, where we will be 
applying stiffness methods. As you know the grid element is different from the beam 
element, where you have an additional degree of freedom. You have the angle of twist 
and the corresponding forces, the twisting moment or torsion. 
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This is covered in the chapter on beams and grids in the book. So let us quickly review 

what a grid is? I have given you a segment of a grid. You have two interconnected 

beams, monolithically connected at the joint B. If you separate out the three free bodies, 

you will find that there will be twisting in all the three of them. If we say A, C and D are 

fully fixed against, both flexure and torsion, you will have only three active coordinates 

at b. You have a vertical translation, and you have rotation at about two axes, as shown 

in that figure. 

If you take out the free bodies, you will find that, in addition to shear and bending, you 

have a twisting moment. The twisting moment at the two ends of each element will be 

equal and opposite as there are no intermediate twisting moments. 

If you treat the beam CD as one beam then you would have to put a torque at B. But, if 

you separate out the two elements, they would look like this. Compatibility demands that 

the rotations at B should be the same for all. What would be a flexural rotation for one 

beam, would turn out be an angle of twist for the perpendicular beam. And equilibrium 

has to be satisfied at location B. The resultant force should add up to whatever force, acts 

at B. So in general, these are fundamental concepts. 
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How do we address these issues in matrix analysis? If you recall, we had covered grids in 

the force method of analysis. We had actually applied the method of consistent 

deformation and had also used the theorem of lies worth. In that, we had separated out 

the beam elements and put some equivalent springs, and try to solve the problem in that 

manner. But that is not effective, if we have large grids. So, it is better to deal with the 

whole grid structure in one go, which is possible in a matrix framework. We will be 

looking only at the stiffness method of analysis. 

There is something called a torsional stiffness for a grid element, which is what you get 

in a shaft. If a shaft, let us say, a circular shaft, solid circular shaft or cylindrical shaft, is 

fixed at one-end and you apply a constant torque at the other end, the angle of twist is 

given by GJ by L times the torque that you apply. 

So, we can talk of torsional stiffness as GJ by L, where G is the shear modulus, J is the 

polar moment of inertia, and L is the length of the element. 

In many ways similar to axial stiffness – EA by L. It also has vectorially the same 

direction, except that you will use a double arrow head. It is important to note that this 

concept of polar moment of inertia is strictly applicable only to circular sections, 

cylindrical sections. They could be solid or annular. The reason is – in non-circular 

sections, you are likely to encounter warping longitudinal moments, which needs a 

separate treatment. 



Let us take a look at the two perfect circular sections. The polar moment of inertia 

formulas are very well known. The relationship between shear modulus and elastic 

modulus, in terms of Poisson’s ratio, is also well known. 

If you are dealing with the non-circular section then the presence of warping complicates 

the derivation of torsional stiffness. However, in cases where there is no restraint against 

warping, we can still use GJ by L. But J is not the polar moment of inertia; here, J is 

called an equivalent torsion constant, sometimes denoted with the symbol C. But let us 

stick to J. It is also called St Venant’s constant because it is St Venant’s torsion. If there 

is warping, you have to slightly modify these terms. 
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Let us take the simple case of no warping. If so, in a rectangular section, the value of J 

can be shown in that expression. It is a function of b and d, where b is the width of the 

section, and d is the depth of the section. b is assumed to be less than d, otherwise you 

have to interchange the terms. The shear flow is as shown in that picture. If it subjected 

to a clockwise torque, the shear stress is 0 at the 4 corners, though the distances are 

maximum from the centre because of complimentary shear requirements. 

If you are dealing with a narrow rectangular section, then that formula reduces to a very 

simple formula – b cube d by 3. That is when it is infinitely long. This is an easy formula 

to remember. For thin walled open sections, we can just use this formula and add up 

different segments. 



For example, I have shown here two thin-walled sections. One on the left, the I section. 

You can derive the formula using the formula for the narrow rectangular section because 

it is an open section. The one on the right, however, is different. It is like the annular, 

tubular section, except that it is a box section. It is commonly used in bridges. It is very 

good against torsion. The reason why this section is very effective against torsion is if 

you look at the nature of the shear flow, you will see that in the case of I section, the 

lever arm for the shear flow is very small, so you do not get much resultant torque. And 

you get a large twist as well. But in the case of a box, you have a constant shear stress 

across the thickness of the wall. It is like a circular section, so it is very effective against 

torsion. 

That is because it is closed. If you cut that box anywhere, make a slit, then it is not 

effective – as effective. And you have a slit, you can go back and use the formula for a 

narrow rectangular section, and add up for the different segments. Anyway, these 

formulas are available, if you want to use them in practice. 

(Refer Slide Time: 08:23) 

 

Let us look at simple problems like this. This is a grid problem, which we will try to 

solve. We have shown here, for convenience, 3 by 2 grid, but you could use it for any 

large grid as well. 

The grid element in the conventional stiffness method will have 6 degrees of freedom. It 

is just like the beam element, except we have an additional – not axial – torsional degree 



of freedom at both the ends. So we have 1 star, 2 star, 3 star. The 3 star, we reserve for 

the torsional the angle of twist. Similarly 4 star, 5 star, 6 star. The element is assumed to 

be prismatic with the flexural rigidity EI, constant flexural rigidity EI and a constant 

torsional rigidity GJ. 

Later, in the next module, we will look at the more complex space frame element where 

you have to add one more. A plane frame element where you have to bring in EA axial 

rigidity with space frame, and you have to bring out some more quantities, which makes 

it more complex.. 

But this is a spatial structure because the loads are acting perpendicular to the plane of 

the grid. And in general, the axis in the global Cartesian coordinates will not be the same 

as the one for the local coordinates. So you have theta. It is actually a rotation by the 

angle theta in x z horizontal plane, and we will see how to derive the displacement 

transformation matrix for such a situation. 

Please note grids do not necessarily have to be orthogonal. We will see examples where 

they could have any orientation. And if you want to do the reduced stiffness method, that 

six degree of freedom model will simplify to how many degrees? Three. Because you 

will find that the rank of the stiffness matrix is only three and to make it stable, you have 

to give three supports. We will look at this later. Yes 

(( )) 

x and z are x y and z are global.  

I have marked it there. x star, y star, z star are local as per our standard convention. x and 

x star need not be in the same direction like in a continuous beam. In this orthogonal grid 

problem, it will be either 0 degrees or 90 degrees. Have you got it? 

But in general, it could be 45 degrees, 30 degrees, any angle. 

So I am doing a generic formulation. But please note if x and x star are separated by an 

angle theta, then z and z star are also separated by exactly the same angle because it is 

just a rotation about the horizontal plane. And y and y star are identical because of 

vertical, the normal to the horizontal plane. This is same. 
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Let us look at this more carefully. We look first at the conventional stiffness method. 

This is the element we were talking about. The element stiffness matrix is simple if we 

make a basic assumption that the torsional stiffness component and the flexural stiffness 

components have no inter-dependents. 

That is the convenient assumption that we are making here. You remember we looked at 

the plane frame element, we are going to look at it in detail in the next module. So you 

will have this GJ by EI coming here. You will have 0 0 here, 0 0 here, because this is 

your torsional constant. It should be actually GJ by L, but for convenience, if I take EI by 

L outside, I have to write here GJ by L. Please note that if this is GJ, then this will be 

minus GJ and so on, and so forth. 

The diagonal elements will be always positive. The rest of the matrix is exactly what you 

had for that beam element. Remember, for a beam element, we had 12 EI by L squared, 6 

EI by L, and so on, and so forth. 

So we have to add it. Just two additional rows and columns at the right places because 3 

star and 6 star come at the end of each of these coordinate numbers. It is not difficult to 

derive. It is just a super position of torsional stiffness to your beam element stiffness 

diagram. 



There is no other change. We have added the third row, third column, and the sixth row 

and the sixth column; all of them are 0, except the diagonal terms and the corresponding 

terms at the other end. The diagonal terms will be positive, the other terms will be 

negative. 
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Let us see how to deal with the lack of alignment between the local coordinates and 

global coordinates? You have a difference between x star and x, and it is easy to write 

down because you remember, we have done this earlier, in the case of a truss. 

It is similar kind of rotation we are doing, except that now we are doing it in the 

horizontal plane. D 1 does not change because that is a translation in the vertical plane. It 

is in y direction. D 1 does not change, so you have 1 there. And the rest of the 

transformation comes from your rotation and so it follows a familiar pattern – cos theta 

minus sine theta, sine theta cos theta. I hope this is not difficult for you, we have done 

this kind of transformation earlier. 

We are doing it exactly the same way. It is very easy to remember and we need to apply 

it. But fortunately for you, we are not really going to solve any problems by the 

conventional stiffness method because it takes lot of time. 
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We will however try to solve the problems more conveniently by the reduced element 

stiffness method. Conventional stiffness method is the same in the book on advanced 

structural analysis, there are some problems solved but we would not attempt those here. 

This is conventional stiffness method, but we will go to the reduced element stiffness 

method. 
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Here the transformations are much easier to do. Let us look at that. Now we are dealing 

with the three degrees of freedom system – 1 star, 2 star, and 3 star. The 3 star is the new 

addition that you have over the beam element. 

The direction of it is pointing outward. It is a double arrow head and you need to give it a 

new interpretation. Earlier, remember when we had the axial element, we had a single 

arrow pointing outward. 

The understanding was – if it is D1 star, it refers to an elongation in the element. So if 

there is an elongation, it is positive; if there is a contraction, it is negative. We also had 

F1 star for the axial element – if it is positive, it means that is axial tension; if it is 

negative, it means axial compression. You need to have something similar here for the 

torsional degree of freedom. 

This is how we interpret a sign convention. We shall assume twisting moments and 

angles of twist to be positive when the corresponding vectors shown with the double 

headed arrow at the ends of the element, directed outward along the longitudinal axis. 

This is consistent with the earlier sign convention for a single-headed arrow for the truss 

element. 
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Just remember this. You will understand when we do it in an application. It is not always 

that you need to apply grid elements in a grid problem. You can replace some of the grid 



elements with the simpler beam element. Can you tell me where you have these 

opportunities? 

When is there no torsion? 

When we (( )) 

When can you release torsion? 

When torsion is (( )) 

There are two instances. The first is when you have symmetry. If you have symmetry in 

the system, you might find that to satisfy symmetry in some of the beam elements you 

cannot have any angle of twist. So for that particular loading condition, which gives a 

symmetric response, you can avoid having that angle of twist. 

Second is in reinforce concrete. In reinforce concrete, it is well known that concrete 

cracks easily under torsion. So, the torsional stiffness that you get from those formulas 

for homogenous elastic materials has to be factored. Usually, we assume a factor of 

around 15 percent or 0.15 because it drastically drops to 15 percent. It is not 0 but some 

design codes. In fact, all design codes allow you to simplify analysis by assuming it to be 

0, which is called torsion-less grillage analysis. But it is not exact. If you want to do it 

exactly, take about 0.15 of the gross properties and do it. 

The first instance is in symmetric grid system, as I mentioned. The advantage is that you 

can reduce the degree of kinematic indeterminacy. You can replace some of the grid 

elements with beam elements but you do all these tricks only when you are dealing with 

the reduced element stiffness method; otherwise, you pretended let it work out the values 

and you will get 0. Standard program will do it like that. In reinforced concrete, torsional 

stiffness can be drastically reduced with the onset of torsional cracking, which is 

generally inevitable. 

RC design codes often permit the neglect of secondary torsion or compatibility torsion, 

which is different from primary torsion.  

There is some torsion you cannot avoid. To satisfy equilibrium, you have to have that. 

But in grids, you do not have those instances in such torsion-less grillage analysis. We do 



this grillage analysis frequently in bridge decks, so there you can release these twisting 

movements. All the grid elements can be replaced by beam elements. But let us learn the 

right, royal proper way of dealing with torsion. Torsion will always be there. It may not 

be significant but you should appropriately assign the torsion stiffness values. 
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So, the method is the same as we have done earlier. Let us demonstrate this straightaway 

with one problem. This is the symmetric orthogonal grid floor. You have full fixity 

against flexure and torsion at the stream ends, which is A B C D E and F. It is assumed 

that all the grid elements have the same prismatic section – EI is given and GJ is shown 

as 0.2 times as EI. You have a gravity loading uniformly distributed at 30 kilo Newton 

per meter. So straightaway you can notice that there is some symmetry in this system. 

You can see that the two shorter beams – CD and EF – will behave identically. You can 

actually cuts the system at the middle J, and take advance of symmetric. You can go one 

step further and you need not have grid elements for all of them, which can you replace 

with beam elements A B because you can see that D G and G C are going to be acting 

like mirror images. Hence, they cannot be an angle of twist along of the direction A B 

vectorially. 

But C G D can twist. Why can it twist? Because if you take the beam A G J H B, it is 

going to deflect in an odd way. You have only showed that the slope will be 0 at J 

because of symmetry, and the slope will be 0 at A and D because the ends are fixed. But 



anywhere in-between it need not be 0, so it will have a rotation. It will hdefinitely have a 

rotation at G and H. And what is the flexural rotation for the longitudinal beam will be 

an angle of twist for the element C D. So, if you isolate the element C D, you will have 

to apply a torque at G, which come from this integral connection. 
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You must first visualize the physics of the problem. You can cut the beam at J. What is 

the boundary condition you will put there? You will put a guided roller because it can 

deflect but the slope is 0, so you can fix it against rotation and there is no twist there 

because it is a point of symmetry. 

If you write down the degrees of freedom, you will find that it normally would take three 

active degrees of freedom at that common joint G. But you need to take only two 

because we have just established that there is not going to be any rotation at A J, along 

the x-axis because of symmetry. D. There is no rotation about that axis because that 

would mean twisting of that element at... 

You have intelligently minimized your work by assigning coordinates carefully. So D 1 

and D 2 are the only displacement unknowns. Then at the restrain coordinates, you can 

add all the remaining degrees of freedom. You have all together 10 degrees of freedom, 

two of which are active, and eight of which are restrain. 



I am just demonstrating with one example. You identify the grid elements – they are the 

elements 1 and 2, and the beam elements are 3 and 4, of which 4 can be simplified with 

one degree of freedom. Why? Because you have a guided roller support. We have done 

that, so we can treat it like a cantilever. 

We have made all the simplifications possible to reduce our work. Any questions? 1 and 

2 are grid elements because there is going to be torsion in these two elements; 3 and 4 

are beam elements. 3 will have 2 degrees of freedom, whereas 4 will have only one 

unknown degree of freedom because of the advantage that you have of a guided fix 

support. So we are really taking advantage of all the knowledge that we have to solve 

this problem. 
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The solution procedure is exactly as we have done for all the problems till now. As you 

do not have any support settlements, so the steps are straightforward. We are using the 

reduced element stiffness method. 
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First, this is the simplified model of the grid that we are going to look at. You have to 

first generate the TD matrix. Will you do that? You have global coordinates and you have 

local coordinates, can you write down the TD matrix for these elements? And once you 

do that everything falls into play. To do the TD matrix you have to apply D 1 equal to 1, 

and see what happens to those rotations; then D 2 equal to 1, etcetera. So I have done it 

here and let us go through it carefully. Listen carefully. D 1 equal to 1 means we are 

giving a vertical displacement here but not allowing any other moment. If this goes up by 

1, what do you think will happen to all the different elements? It just goes up by one, you 

will have chord rotations. Let us take the first element. Will you have an anticlockwise 

chord rotation or clockwise? 

Anticlockwise. 

Anticlockwise, which means you will have clockwise equivalent end movements. So you 

get minus 1 divided by the span is, 5 so 1 by 5 is 0.2. So you get minus 0.2 minus 0.2. 

And you do not get anything in the third degree of freedom because that corresponds to 

an angle of twist. Is it clear? What we got here what about the next element? In the next 

element, it is clockwise if you look at in G to C, but we are looking at it from C to G, so 

the orientation is done this way. So you have to be very careful. We will get it identical. 

And what about element 3? Element 3 also has a span of 5 meters. There also you have 

an anticlockwise chord rotations. Does it fall in place? And for element 4, it does not 



matter because it is a cantilever you lift it up, the guided roller will also go up. So you do 

not get anything – 0. So the first column we filled up correctly. 

The second column corresponds to 2. As far as the elements 1 and 2 are concerned, it is 

clearly an angle of twist, but it is going to be outward only for element 2 and inward for 

element 1 by the sign convention we took. So, we write here minus 1 and plus 2. And as 

far as the element 3 is concerned, it is a flexural rotation. So, it is 1 as far as element 4 is 

concerned. It is a flexural rotation, it is 1. Like that, can you fill up all the others? 

Now you can do this exercise, go through it carefully. We have just demonstrated this. 

You have to be careful about the chord rotation and the sign conventions. It is quite 

straightforward. This is the displacement transformation matrix. You are doing it by 

looking by inspection and filling it up. 
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Next is fixed end forces. Luckily for you, all the beams are having a span of 5 meter and 

the loading is the same – 30 kilo Newton per meter. So the fixed end moment is plus or 

minus 13 into 5 squared by 12. It is turns out to be 62.5 kilo Newton meter. 

If you take the first two elements – 1 and 2 – it is plus 62.5, minus 62.5 and 0. 

Anticlockwise positive, clockwise negative, and 0 because there is no torsion. Then you 

can also find the vertical reactions. Similarly, for the second element, it is exactly same. I 

mean the third element – it has the same span, the same loading and for the fourth 



element, it is a guided roller support. So you should take the full span, you will get the 

same formula 32.5. It is anticlockwise, it is positive and the vertical reaction is also the 

same. 

We are dealing with the same number – 62.5 and 75, because all the spans are identical, 

the loads are identical. Not difficult. Then from this, you can also check out your 

deflection because that is the question asked. What is the maximum deflection in that 

entire grid is very important, when you design grids because deflection is one of the 

governing criteria for deciding the depth of the beam. The deflection should be within 

acceptable limits. So the fixed end deflection is very easy to work out. You know that for 

a simply supported beam, the deflection is 5 by 384, the new L rise to 4 by EI. If it is fix, 

its 1 by 384, so we have just used that formula and you get a very small deflection of 

0.977 mm in this case. 
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You can add up all the vertical reactions and find the equivalent force vector F A 75 into 

4 is 300 kilo Newton. It is acting upward, so that is your fixed end force for F 1. F 2 gets 

cancelled out because minus 62.5 and plus 62.5 neutralize each other. Similarly, you can 

get the fixed in force vectors at the restrained coordinates. It is easy to compute. 

You just pick up those values from your fixed end forces. So you are ready with this. 

You can find your resultant net load force vector. There is no concentrated load given in 

the original problem, it is only uniformly distributed load. So you got your net force 



vector exactly as we done in the earlier problems – F A minus F fA. F A is a null vector, 

FfA we have already computed. 
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The element stiffness matrices are very easy to calculate. You know the formulas -- EI 

by L is known, GJ by L is known, the first two are grid elements. So, you can write k1* 

and k2*, it is a 3 by 3 matrix. 

The only new item here is a third row and third column. You just put GJ by EI value, 

which turns out to be 0.2. You can expand it. For the third element, it is a conventional 

beam element -- remember 4 EI by L, 4 EI by L, 2 EI by L, 2 EI by L. And for the last 

element, what will it be it is going to be? 1 by 1. It is cantilever. 
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So what will be the formula EI by EI by L? That is it. And L for this is 2.5 meter. So you 

are ready with all the k matrices. You got the T D matrices. This exercise is best done 

with the help of may be MATLAB or something. You can get kAA, and you can get kAR. 

You can get kRA, you can find the inverse of kA matrix, and you use a standard 

equilibrium equation to find the displacement. 

You have got D 1 and D 2. You got the net load vectors, so it is easy to find out. After 

you found D 1 and D 2, you can actually substitute the value of EI and get the values. 

Remember D 1 is a vertical deflection there, but we want the final deflection. So how do 

we get that? 

This deflection D 1 has come from 

(( )) 

Yes. But the other part will give the same deflection. You have to add something to this. 

You have already calculated due to fixed end forces what the deflections. You have to 

add that. You have to add something else. 

That rotation in a cantilever will give you some additional because you have simplified 

your problem here. It will give an additional value. Remember, for a cantilever at the 

guided roller support, we are finding the deflection at the guided roller support, not at D 

1, please note. 
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We are finding the deflection at J, so at J we have something more. Then what you get at 

G? What is the additional thing you get? It is a slope into span by 2. You can prove for a 

cantilever, so you have to do it very carefully and work out the deflections. Support 

reactions are easy to calculate, use that formula and take a look at the final free bodies. 

You will find that in that long beam, you will have some local torques coming because of 

the connections with the shorter beams. 
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You do this – draw a free body, check your equilibrium, find the member end forces by 

this formula, and draw your shear force diagram carefully. We have done grids earlier, so 

I am going fast. We have done this kind of problem earlier. Draw your bending moment 

diagrams. We will have jumps in the bending moment diagram, where you have local 

concentrated moments acting, and you will also have twisting movements in the shorter 

beam. So this is all you need for a design. You have got the full beam, you have got all 

the internal forces, you have got the support reaction, you have also got the maximum 

deflection so very powerful. We are solving such problems. 
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This is a problem that is very interesting but we do not have time to solve it. Please read 

it in the book. Do not worry, in the exam I am not going to ask you such a problem but 

architects like to give such a roof for example. You have an octagonal roof when you got 

these radial elements and circular elements can you design this from first principles. You 

can take advantage of symmetry and solve this problem. You just need to apply your 

brain, and you can actually use some shortcuts and crack this problem very easily. It is a 

reading assignment for those of you who are interested. 
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I have given you an assignment problem which is much simpler. Remember this 

problem? It is a square grid problem -- you have got two beams, they are identical 

forming a plus shape but you have eccentric load acting on one of them at F. 

So you are actually asked to plot the rough shapes of the shear force bending moment 

and twisting moment diagram, which you can by inspection. Look at this carefully. 

Which of them will you treat as grid elements? If you draw the free bodies, its similar to 

the previous problem, and you will find that A B will be connected to C D through that 

joint at E, and for one of them – for A B – what do you have? Do you have beam 

elements or grid elements? Beam elements. And for C D, you have grid elements. 

So, it is similar to the other problem. Please try to sketch and predict the shapes of the 

bending moment and shear force diagram, and then with these notation, you can go 

ahead and solve the problem. 
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This is the last problem in your assignment which you should complete soon. And now it 

is time to look at your second quiz results. I have got the papers. Let’s take a look here -- 

the degree of kinematic determinacy. We are looking at your quiz questions, which you 

did. I am happy to say that some of you got full marks -- 15 out of 15; and I am sorry to 

say that we have a full spectrum. Some of you got very low marks. 

Please figure out where you went wrong, if you went wrong and go through it carefully. 

It is very clear that some of you fully understand what is happening but some are not. 

I have been liberal in my marking but take a look at this. Remember that such problems 

can be solved very easily if you take advantage of anti-symmetry. But some of you 

insisted on slogging the hard way – three unknown displacements. And you have got it 

right also but with so much of effort. You are not really taking advantage, it is actually 

very easy problem. 
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You remember, we have done this earlier. You can reduce the problem to superposition 

of symmetric and anti-symmetric components. Yes, we have done this. And you need to 

analyze only one part of it because the other part does not give you any curvatures. So 

that is all you need to analyze. And you have to find fixed end moments correctly and 

write your slope deflection equations correctly. The fixed end moment is 30 into 4 by 2, 

60, anticlockwise. 

This is conventional slope deflection method, so you put minus because it is 

anticlockwise. And it is EI by L because it is cantilever behavior for the element A B and 

is 3EI by L. L in this case is 3 meters. Some of you did it by memory based on the 

problem we had solved earlier. I do not know, you have phenomenal memory because 

you put value of 2EI for the beam element because in the problem we did in here, it was 

2EI. It’s very the Indian memory is very good, but unfortunately, you are not seeing the 

problem here. EI is constant and so that is the change you make. And if you solve this, 

the equilibrium is very easy to solve. Your bending moment diagram should look like 

this. It is an easy problem. 



(Refer Slide Time: 41:12) 

 

Next problem is actually an easy problem. Some of you try to figure out what truss shape 

it could be and did all kinds of funny things. But it is actually very simple. If you go back 

to basics – remember this picture. You have the structure-level coordinates, you have the 

element-level coordinates, you have T D flowing downward, from D to D*, and you have 

T F flowing downward from F to F*. The left one corresponds to the flexibility 

formulation, the right one corresponds to the displacement formulation. In this question 

what is given to you? You have got T D and you have got F. And what are you require to 

find -- F*. So, you have to just use the right principles. You have T D, and it is flowing 

downward but you can bring in the contra gradient principle, which gives you T D 

transpose. But which gives you a connection between F* and F. So, you need to go to the 

other way, so what should you do? Invert it. And you get the answer. 

Now I have got all kinds of permutations and combinations from you. Some of you have 

just multiplied the same T D matrix and hope that you get the forces, which is ridiculous. 

Some of you have took a transpose because you knew there was some contra gradient 

principle involved and you multiplied and you got again some ridiculous results. But 

many of you did it right. You have to invert it and do it and you do not need to figure out 

what truss is involved. It is a very simple problem. 
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Third question we have done earlier, so you should have crack this. First of all try to 

minimize your work. Those you need to find only kAA and delta FfA because there is 

nothing else involved. So, what is the size of kAA matrix – 1 by 1. You really do not need 

to even bother about the restrained coordinates. You could have managed with 1 but 

since all of you, in fact there is no one to took only one coordinates, so let us me also 

follow your example. This is the familiar picture, if you want the full T D matrix, you 

can write it down but all you need is only T D A and your k star matrix is very simple. It 

is a diagonal matrix. 

Your kAA is child’s play, in one shot you can get it. Do not get full k but almost all of 

you got the full 3 by 3 kA. And then you picked up the top left hand corner and said that 

is kA. It is very easy. 

See, when you write in exam, you have to really be intelligent and do the correct thing in 

the least time involved. So what about your fixed end forces? Some of you forgot there 

only one bar is heated. You kind of heated both the bars and you got it wrong. So that is 

very easy to solve. The answer is 12 mm moving on the right side. Some of you moved it 

on the left side and never thought that it is foolish because if you heat that bar B, it is 

going to move to the right. How can it move to the left? 
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Last problem. Again simple. It is a truss. All you needed to do is to generate the stiffness 

matrix, nothing more, by just multiplying some matrices. This is the problem. You know 

how to write the T D matrix, it will look like that. You have four elements. Do not forget 

this. Spring is also an axial element, so it is very easy to write down. It is 4 by 3 matrix. 

Your k* matrix is child’s play. 

Remember everything is given to you. The axial stiffness is 40 kilo Newton per meter. 

But some of you thought it is EA and you divided it by the span. I do not know why. So 

you have got this – kilo Newton per millimeter, multiplied out, you get the final answer. 

Thank you. 


