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Good morning. This is lecture 25, module 4, Matrix Analysis of Structures with Axial 

Elements. 

(Refer Slide Time: 00:31) 

 

In this session, we will be completing application of the reduced stiffness method. If you 

recall, in the last class, we had shown how this can be applied to 1D systems and also 

plane trusses. We will do one more example of plane truss. Then, we will take a look at 

space truss. 



(Refer Slide Time: 00:45) 

 

This is covered in the book Advanced Structural Analysis. 

(Refer Slide Time: 00:49) 

 

Reduced Element Stiffness Method 



(Refer Slide Time: 00:50) 

 

Remember this diagram. This is one way of saying the big picture, global coordinates, 

local coordinates, structure stiffness matrix, element stiffness matrix and the two 

transformations. In the stiffness method especially the reduced element stiffness method, 

your first task is to get the T D matrix correct. You remember that we had some 

difficulty when we did in the plane truss. Today, I will show you an alternative way of 

doing it. 

Once you have got the T D matrix, you can partition it to T D A and T D R. If the 

problem does not require you to find support reactions and you do not have any support 

movements, then you can skip the T D R. It is enough to do T D A. 



(Refer Slide Time: 01:51) 

 

Remember: This was the problem we solved at the end of the last class. 

(Refer Slide Time: 01:58) 

 

It took a while for you to get the idea of getting the T D A matrix using the kinematic 

approach. Finally, we got this. You remember? We did it step-by-step. This is actually a 

very efficient way of doing it because you can program it. You do not have to think. It 

will do it automatically provided you are clear about the start node, the end node, and the 

correct value of theta I x. 

There is another way of doing this. Can you tell me that? 



There is another perhaps simpler, but then you have to solve every problem manually. 

What would that be? 

Force and step method. 

You can use a static approach. How do you do that? 

[Noise – not clearly audible] (Refer Slide Time: 02:42) We have studied T D transpose. 

T D transpose; you are actually invoking the contragradient principle. Is it easier to 

derive the T D A transpose matrix and the T D A? Let us see. 

In the static approach, this is the relationship (Refer Slide Time: 03:03) that we want. 

Please note: In the kinematic approach, what we are doing is we have the structure, in the 

structure, we are applying one global displacement at a time; arresting all the other 

displacements. Then, we are finding out what happens at the element level. If you look at 

the element displacement vector, what would these quantities refer to? (Refer Slide 

Time: 03:32) These are the element displacements. What do they refer to? What does D 

1 star refer to? 

Axial deformation in that; 

It is just the elongation in the element 1. This has only one degree of freedom. Is it clear? 

If you move the structure, the joint displacement one at a time, it is going to cause 

elongation in the different members. We are trying to figure out what these elongations 

are. Let us say you want to fill up the first column. You put D 1 equal to 1. You can 

actually draw a sketch and figure out what the elongations are; or, you can do it 

mechanically using the formula that we demonstrated in the last session. We assumed 

minus cos theta, minus sine theta, plus cos theta, plus sine theta for the sign convention. 

Now, we are doing something different; something very interesting. I want you to 

understand physically what we are doing here. What is the size of the T D A transpose 

matrix for this problem? 

5 into 6 

5 into 6; so, there are going to be 6 columns and 5 rows. 



Let us take the first one. I want to fill up the first column. That means I must apply F 1 

star equal to 1. What is F 1 star? 

It is the bar force. 

It is the bar force in element 1. So, I must visualize the situation, where in this truss, 

(Refer Slide Time: 05:05) only this bar will have a force. Do not ask me how that force 

comes. 

Let us say somehow you have only one force. Only one element has a force; no other 

elements have a force. Then, to satisfy equilibrium, you must be having some joint 

forces; only then, it is a self-equilibrating system. Can you fill up the first column of this 

(Refer Slide Time: 05:26) using equilibrium? Let me help you. You need to look at only 

bar 1 because bars 2, 3, 4, 5, 6 do not have any forces. So, will it not look like this? I 

mean I can draw the whole truss, but I might as well take it out separately. If that bar 

force in bar 1 has to be unity, then does not equilibrium demand that I must have equal 

and opposite forces at the two ends. This refers to the coordinate 2 (Refer Slide Time: 

06:05) and this refers to the coordinate 8. It follows that if this has to have a unit value, F 

2 must be equal to 1 plus 1 because 2 is pointing upward. F 8 must be equal to minus 1 

and there are going to be no other forces in the truss. So, help me fill up the first column. 

(Refer Slide Time: 01:58) 

 

What will it look like? 0 1 0 0 0 



Now, what about this F 8? 

(Refer Slide Time: 06:40) [Noise] 

If I want to include F, the restrain coordinates, then the size of the T D matrix will be 

bigger; I have to bring in T D R. Is it clear? 

Similarly, can you fill up the next column? 

0 0 0 1 0 

That is the picture; 0 0 0 1 0. Got it? Third one? 

0 0 0.6 0.8 0 

So, third one. If I have to have a unit force in bar 3, I must have equal and opposite 

forces. So, very clearly, the component of this (Refer Slide Time: 07:18) along the x axis 

must be given by this force. The component of this along the y axis must be given by that 

force. At this end, I need not worry because it is going to a restrain coordinate. So, is it 

clear that F 3 and F 4; you will get like this (Refer Slide Time: 07:35). 

Now, fill up the next one I am not going to draw anymore. 

Minus 0.6; minus 0.6 0.8 1 0; 

No, now, we are dealing with this bar 4 (Refer Slide Time: 07:49). 

0.6 minus 1 0 1 0 0; 

Please do it and give me the answer. 

[Noise] (Refer Slide Time: 07:58) 

We will take a look. In this bar, (Refer Slide Time: 08:07) if it were to have a force, it 

will effect 1, 2, 5; 6 is outside; 1, 2 and 5. So, what is F 1 going to be? 

Minus 0.6 

Minus 0.6 

What is F 2 going to be? 



0.8 

Plus 0.8; what is F 5 going to be? 

0.6 

If you cannot do this, you are in trouble. It is easy; it is not difficult. Actually, you can 

generate using the kinematic approach and you can do a quick check using the static 

approach. What about next column? F 5; that is pretty easy. That is, you are going to fill 

up. If this bar were to have a unit force; 

Minus 1 0 1 0 0 

Minus 1 0 1 0 0; very good; you have become expert at this. Last one; sixth column? The 

spring alone will have a unit force. You will get only here (Refer Slide Time: 09:18). 

0 0 0 0 minus 1 

0 0 0 0 minus 1; great; got it? 

Now, just check it out. This row here (Refer Slide Time: 09:32) in the T D A matrix is 

the column here in the T D A transpose matrix. You can check out all the rows. So, 

which do you prefer, the kinematic approach or the static approach? 

Static approach. 

That is because we have been brainwashed from the beginning to study equilibrium. 

Engineers are usually very strong in statics and very weak in kinematics because 

kinematics needs a little more exercise of your brain; you have to physically see the 

movements. Statics is more abstract. Is it clear? 

However, it is good to know both techniques. However, when you are programming, just 

blindly do it by the method we did it in the last class. Is it clear? Now, are you absolutely 

clear about T D matrix, not afraid of it, comfortable with it? Imagine what you need to 

do in a space truss; it is really challenging. 



(Refer Slide Time: 10:31) 

 

Let us do a tough problem. This is a compound truss. Remember: We have done this in 

basic structural analysis. Now, we are going to do it by reduced element stiffness 

method. So, how do we do it? As this truss is statically determinate; how do we know it 

is statically determinate? You can also do that check m plus r equal to 2J. We know that 

the bar forces will not be dependent on the element stiffnesses. Let us say that the 

question here is find the bar forces. So, no need to find the joint displacement. So, you 

have to assume the axial stiffness of all the members. If no input data is given you, you 

can conveniently assume that all the bars have the same axial rigidity E A. Will this 

change the answer? 

Let us say every bar had a different E A. What will it change? 

[Not audible] (Refer Slide Time: 11:30) 

The displacement field gets affected. The elongations in the bars will depend on the axial 

stiffness or axial rigidity. The joint displacement will get affected, but the bar forces do 

not get affected. Why? 

[Not audible] (Refer Slide Time: 11:51) 

Because this is a statically determinate system. So, we can make this assumption. Let us 

do that and go ahead. 



(Refer Slide Time: 12:02) 

 

We will have to now put the global coordinates. How many active coordinates you think 

we have here? 

9. 

So, let us label them; 1 2 3 4 5 6 7 8 9. We have some restrained coordinates also; three - 

10 11 12. What do we do next? Local coordinates; you have to draw that sketch and that 

is a standard sketch. Every element can be modeled like this. The axial stiffness is given 

by E A by L. In this case, we are assuming E A is constant for all the bars; just for 

convenience. 



(Refer Slide Time: 12:49) 

 

How do we solve this problem? Exactly the same procedure as we did earlier. Generate 

the T D A matrix, which is what you are going to do now. Structure stiffness matrix; you 

can use a direct stiffness method and get… All you need to do is K A A here; you do not 

need to fill the whole matrix because we just want to find the bar forces; very easy to do 

as we are required to find only the bar forces and not the support reactions in this 

problem. As there are no support movements, we can ignore the restrained global 

coordinates. Finally, you get the member forces. These are all standard; as we did in the 

last problem. 

(Refer Slide Time: 13:32) 

 



Here is another exercise for you. Fill up the T D A matrix with this help. Now, let us just 

see how we did this. This table is very helpful especially for programming. There are 

nine bars. So, I call them 1, 2, 3, 4, all the way to 9. Then, the bars are labeled here. I 

have to decide my origin. So, let me say origin is A. I write down all the coordinates A, 

B, C, D, E; everywhere. These dimensions are given to you. So, it is pretty easy to write 

this down. 

Then, I have to decide on the direction for X star. That means I must identify the start 

node and end node. For example, bar 1 starts at A, ends at B; bar 2 starts at B, ends at C; 

bar 3 starts at C, ends at D; bar 4 starts at D, ends at E; and bar 5 starts at E, ends at F; I 

went sequentially. Then, bar 6 starts at A; can you see? (Refer Slide Time: 14:42) It 

starts at A, ends at D; bar 7 starts at A, ends at E; bar 8 starts at F ends at C; and bar 9 

starts at F, ends at B. It is not very difficult to do; in fact, ideal for programming. That is 

how you identify the joints, the nodes, the elements, and the direction of incidence. 

Now, once you have done this, you just have to put in this formula (Refer Slide Time: 

15:16). It will generate the length. This formula is straightforward. You do not have to 

do any calculations; it will do it automatically. So, you will get all the lengths. 

Now, bar 3 has a length 1 because it is 1 meter, but let it generate it automatically. So, 

you can write a small program; it will do it. Similarly, you can get cos theta and sine 

theta. Is this clear? You do not have to break your head over it; you can do it 

automatically. With this information, can you fill in the T D A matrix at least for element 

1? For the first element, fill in the T D A matrix and by the way, you can also get the 

axial stiffnesses because it is given by E A by L; you have calculated L here. So, it works 

out to these values (Refer Slide Time: 16:10). 

Sir, signs are interchanged. 

Signs are interchanged? 

Sir, in the fourth quadrant, cos theta should be positive. 

Wonderful, cos theta for the fourth element; 

It is right; from the end to the start; how does it work? What is the end? 



4 

4 minus 3; So, it should be positive. 

Sir, in fourth quadrant, cos theta is positive. 

Use your corrected value and let us get T D A. Give me T D A for element 1. Is the 

element 1 OK? 

Yes sir. 

Sir, except 4 and 5, everything is OK. 

Expect for 4 and 5 everything else is OK; wonderful. So, 4 and 5 you correct it and you 

generate for element 1 only. You are right; the plus and minus got switched. Please get 

me the T D A matrix. 

(Refer Slide Time: 17:22) 

 

This is the formulation. This can be easily generated. For example, take the element 1. 

The element1 is connecting to 1 and 2 and something here; probably, 10 and 11 here. 10 

and 11 is outside T D A. Which is the start node? Start node is here; end node is there. 

So, you will be using cos theta and sine theta plus. Does it match, is this correct? Let us 

just check (Refer Slide Time: 18:06) That is right; cos theta for this is this and sine theta 

for this is this. Is it clear? All the others will be 0. Like that it is possible to generate for 



all the other elements. Can you do it, will you work it out? If there is an error in the 

fourth and fifth, you correct it. Will you do it? Is it difficult, can it be done easily? 

Let us proceed. I just want to demonstrate that you can do big problems as well just by 

programming and letting the computer generate all these results. However, you can also 

manually do it. 

(Refer Slide Time: 18:46) 

 

Now, you need to pre-multiply the T D A matrix with the k i star matrix. That is easy to 

do. You have already got k i star. What is k i star? k i star is 1 by 1 matrix. It is given by 

E A by L. We have already done these calculations. 

Whatever values you got there just multiply them. The first row in the previous T D A 

matrix, you multiply with k 1; second row, you multiply with k 2. So, you will get these 

numbers. It is easy to do. What do you do next? Again you pre-multiply all of these with 

T D A transpose. So, you do that; you are right. 



(Refer Slide Time: 19:38) 

 

You do that, you some up over nine elements, and you will get the full structure stiffness 

matrix. Is it clear? You will get the full structure stiffness matrix, but if you make errors 

in the T D A with signs and all that, some elements in this matrix will have a wrong sign. 

However, you will notice one thing. All the diagonal elements will always be positive. 

So, please do this carefully; better not do it manually. Do it in MATLAB or in SKYLAB 

or whichever software you have. Will you check this out? It is a demonstration of how 

you can do it for a big problem. Obviously, such problems will not be asked in any 

examination because you just do not have the tools or the time to do it. However, in real 

life, you have such problems. 



(Refer Slide Time: 20:33) 

 

Then, what is the loading? The loading is a force acting at B and that coordinate matches 

with F 2. So, loading is F 2 is equal to minus P. Of course, you can handle any loading, 

but in this problem, we had just one isolated concentrated load. You have that stiffness 

matrix. You can invert it and do not bother to write it down; let the computer do it. Do 

double precision if you want so that you preserve the accuracy in the matrix; just pre-

multiply it. Since you have a well-conditioned matrix, the inverted matrix will be very 

good. One way is to check it out; you do k inverse k, you should get an identity matrix 

with very minimal errors. Otherwise, if it is not so well-conditioned, it is safer to use 

some elimination techniques; or, you can use even Gauss elimination to do it; or, Gauss-

Seidel. Those are all the options that you have, but I think it is good enough to just do the 

matrix multiplication. Once you have done this, you have got the joint displacements. 

What do you do next? 

[Noise] (Refer Slide Time: 21:50) 



(Refer Slide Time: 21:56) 

 

You have got the unknown displacements. [Noise] Then, you get the member forces. 

Remember: You had already calculated this k T D A. You have got those calculations; 

just multiply them with D A and you will get the bar forces. Check them out with the 

answers we got when you did the same problem because it is statically determinate. We 

used method of sections; they should match. That is the proof. The proof is that you are 

checking with the force method and saying whether you are getting the answers; that is 

it. We have solved a problem that is easier to solve using the force method by the more 

difficult stiffness method because with computer, the software will always do it by the 

stiffness matrix. 

At least you are clear with the method while solving plane trusses? 

You can check equilibrium by including the restrained global coordinates; you can also 

get the support reactions. It is easy to do. For want of space, we are not doing it, but we 

will get the correct answer. 



(Refer Slide Time: 22:57) 

 

Now, let us jump into the most difficult problem of space trusses. One good thing is that 

the same element stiffness matrix holds good whether you are dealing with the 1D 

structure, 2D structure or 3D structure. The rank of that matrix is 1. All you need is the 

axial stiffness, but you have to worry about the orientations. This is because when it was 

an 1 D system, like a chain you had just the x axis; when you had a plane truss, you had 

x axis and y axis. Now, you have x, y and z. So, the local coordinates do not change, but 

the T D A transformation changes. Can you visualize how it changes? 

For example, you are comfortable with a plane truss. You know that it is going to be… If 

you are trying to link the joint displacements at the two ends with the axial deformation 

of the element, it is always related by this - minus cos theta, minus sine theta, plus cos 

theta, plus sine theta. How do you think this will look when you are dealing with an 

element arbitrarily directed in space? 

[Not audible] (Refer Slide Time: 24:16) 

Will you use cos theta and sine theta? Are there more thetas than one theta? How many 

thetas you need to do? 

Two; Three 



There are three thetas. Let us say I have vector in space; I have x coordinate, y 

coordinate, and z coordinate. I have three thetas, but they are related by the norm that the 

direction… 

[Not audible] (Refer Slide Time: 24:45) 

That is right; cos square theta x plus cos square theta y plus cos square theta z must be 

equal to 1. Is it difficult to get the cos theta, sine theta? No, once you have the 

coordinates you do the same game. Can you guess what will be the T D matrix? 

Minus cos theta x minus cos theta y minus cos theta z; plus cos theta x plus cos theta z 

plus cos theta y. 

Brilliant, you hit the nail on the head; that is all. 

For a space truss, write down the three directions cosines. You do not have to write theta 

also; you just need the coordinates because this is actually (Refer Slide Time: 25:35) cos 

theta x, cos theta y, cos theta z. Then, just like you had minus cos theta, minus sine theta; 

by the way, minus sine theta is actually a direction cosine with respect to the y axis. So, 

you need the three - the x axis, y axis, and z axis. You have minus; why is it minus for 

the first three and plus for the next three? 

Start node and… 

Because if you are looking at this corner, (Refer Slide Time: 26:02) I have not drawn a 

picture; you have 1 2 3; you will find that you are pushing the element inwards. So, the 

element is going to contract; whereas, at the other end, you are pulling the element 

outward. So, it is going to elongate. That is why in the first place, these were minuses 

and these were plus and the same argument holds good here. You have a doubt? 

Yes sir. 

Let me explain. This is the element. Let us first do the plane truss. Maybe you should be 

looking like this (Refer Slide Time: 26:43). This was the x axis; this was the y axis and 

the coordinate was 1 and 2; and you had coordinate 3 and 4. Now, we want to know what 

happens when I apply D 1 equal to 1 to this element and D 2 equal to 1? Do you agree? 

When I apply D 1 equal to 1, I prevent this movement and I prevent D2. This is going to 



reduce in length because I am pushing it. So, will I get a positive elongation or a negative 

elongation? 

Negative Elongation (Refer Slide Time: 27:20) 

Whether I push it this way or this way, I am going to get minus. However, whether I pull 

it this way or this way, I will get this member elongating plus. Does it make sense now? 

At the start node, for the direction, we assumed that we will get minus minus plus plus. 

Now, what has happened is this is tilting in space. It is pointing like that. So, I have not 

only x and y, I have z. So, I have three coordinates – 1, 2, 3. Whichever way I push, as 

long as I arrest this degree of freedom and the other two degrees of freedom, I will 

always get a contraction. When I pull here (Refer Slide Time: 28:09) I get an elongation. 

Does it make sense? That is all you need to know. 

Now, if you are doing conventional stiffness method, which we briefly discussed, it is 

little more complicated. However, in reduced element stiffness method, it is pretty easy. 

Clear? 

Sir, tension coefficient method only applicable for truss, which is statically determinate? 

You tell me 

No 

What is the tension coefficient method? It is just writing down equilibrium equations 

from joint to joint. 

It did involve direction cosines. 

It did involve direction cosines because the forces have components in all the three 

vectors. Actually, you have direction cosines, but you have got a certain number of 

equations; you are not looking at compatibility. So, obviously, it is applicable only for a 

statically determinate rigid structure. Luckily for us, most of our trusses including 

transmission line towers are by and large statically determinate. 

You can also program it. 



You can also program it; it can be done. However, standard software packages does not 

because it wants you handle both the determinate and the indeterminate. It will do… You 

know that the degree of static indeterminacy may be 0 or 1 or 2. The degree of kinematic 

indeterminacy may be 50 or 100. It will still prefer to solve hundred simultaneous 

equations because it is programmed that way; otherwise, you have a choice about the 

redundant. Is it clear? 

(Refer Slide Time: 29:48) 

 

Let us take a simple problem. I want you to do it intuitively. You could be asked this 

problem even in your IIT entrance exam. So, I am going back to school giving you a 

simple problem. Consider a simple space frame comprising three identical members in a 

tripod arrangement. 

Remember, you have been using a theodolite, which has got three legs. Let us say you 

keep it symmetrically and you have got a weight hanging from the ball; ball and socket 

joint on the top. Each leg is 2 meters long and interconnected to a ball and socket joint at 

O at top, 1 meter above ground, with the hinged bases forming an equilateral triangle on 

level ground. 

Now, I have seen you people put some triangle there so that it does not move in the 

corners, when you use a theodolite. That is as good as providing a hinged base; 

otherwise, you have to plant it firmly on the ground so that it does not move. 



Show how the stiffness method can be used to find the axial force in the three members, 

when the joint at O is subject to a gravity load of 60 kilo newton. Also, show that no 

axial force will be induced in the members on account of any lack of fit or temperature 

effects. Why would you not have any axial forces? Because it is a just rigid statically 

determinate structure. However, we have to demonstrate it using stiffness method. It is a 

simple problem. So, let us give it a shot. 

(Refer Slide Time: 31:17) 

 

Here is a plan view. I have done the work for you. Here is a side elevation say section V-

V. Can you understand what is going on? It is a triangle on the base; it is arrested here; 

arrested here; arrested here. They are pinned supports. This O is 1 meter above. A, B and 

C are restrained and I forget about the restrain coordinates. So, I have only three active 

degrees of freedom. Let me call them 1, 2 and 3. Does it make sense? The tripod 1 up, 2 

along the x axis, and 3 along the z axis. 

I have chosen this point b as the origin. This is x, (Refer Slide Time: 32:13) this is z, y is 

vertically above; this is y; got it? Is this picture clear? You can figure out how to locate 

these dimensions because you are given this length is 2 meters. If this is 2 meters, this 

angle will be 30 degrees because this is 2 and this is 1. So, 1, 2 and this will be root 3. 

So, this is 1.732. These dimensions can be worked out. That is the first thing you need to 

do. 



Now, without doing any calculations except extremely simple ones, can you tell me what 

is the force in each of these legs? Will the forces be equal. 

Yes 

Yes, tell me the value. The total weight is 60. So, 60 divided by 3 is 20? 

No Sir. 

How do you get it? Common sense; how do you get it? 

Vertical components. 

The vertical components of the three axial force in the bar; each bar must be 20? 

40 in each. 

40 in each. Is it clear? 

Yes Sir. 

First of all, it is statically determinate. You have 3 members, 4 joints; it is restrained in 

three directions. So, m plus r is equal to 3 j. It is symmetric. So, all three bars will have 

the same axial compressive force N. 3 N plus 60 is equal to 0. So, N is 20 by sine theta. 

You can show that theta turns out to be 30 degrees. So, it is 40. You are right. That is 

how easy it is, but let us pretend we do not know the answer. We have to do it the hard 

way using the stiffness method. It is an easy problem. 



(Refer Slide Time: 34:09) 

 

The procedure is as we did in the previous example. 

(Refer Slide Time: 34:15) 

 

However, we are dealing with the space truss. This is the truss. Here again for the 

coordinates chosen, it is possible to write the start node, the end node, the C i x, C i y and 

C i z. Clear, you can do it? Then, the start node is arrested in all the three legs. So, the 

active coordinates are at the end node. So, the minus minus minus is not required here; 

only plus plus plus. Is it clear? That is easy to write down? 



(Refer Slide Time: 34:56) 

 

You can pick that out and that is what you get. You just have to pick the values that we 

got from the previous table; you have got the T D A matrix. It is straightforward; there is 

nothing in it. Then, what do you do? You have got your T D A matrix, then? You have to 

generate your stiffness matrix. How do you do that? 

Let us assume all the three legs are identical; same E A value. The length of each is 2 

meters. So, E A by 2; I can put it in the unassembled form; E A by 2, E A by 2, E A by 2; 

1 by 2 is 0.5. So, I can write like this. Clear? This is k tilde star matrix. Then, I do the 

same thing as I did earlier. I post multiply by T D A. I have got T D A. What is T D A? 

This direction cosine matrix (Refer Slide Time: 35:52). I have got k star. So, I get this. 

Then, what do I do with this? Pre-multiply it by T D A transpose. Let the computer do all 

that; you have got this. 

When you see an answer like this, you should pause a while. Why should you pause? 

You should think if you are a good engineer because you have got a diagonal matrix, 

which is rare. Did you make a mistake or does it make sense? You have to always pause. 

Whenever you get beautiful results, you must say why did not I figure it out? Is there 

some meaning? So, let us see carefully. 

First thing, you have this tripod; 2 is acting upward. It is symmetric. If I arrest 1 and 3 

and pull up 2, do you think there will be some reactions where I have arrested? Because 

they will be k 1 2 and k 3 2; or, there is no need to arrest. Those points are not going to 



move. What do you feel? It is symmetric. When I pull something up, will it have any 

displacement in the horizontal plane? 

No. 

No. So, it make sense. So, you have approved intuitively that k 1 2 and k 3 2 will be 0. 

So, that proves something. Now, you put a force if D 3 equal to 1; put a displacement 

here (Refer Slide Time: 37:29). You pull it. Do you think vertically there will be any 

movement? 

No. 

No. So, you would not get a force k 2 3. Agreed? Because vertically, there will not be 

any reaction. Sideways, will it be partial to one side? No. So, you will get k 1 2 equal to 

0. So, intuitively, you know – yes, it is going to be a diagonal matrix. So, it make sense. 

Is it clear? 

(Refer Slide Time: 38:07) 

 

It is good to do these checks. Then, you find the equivalent joint loads. You get… Is this 

correct, the loads are 0, minus 60, 0? Then, what do you do? Now, let us add some more 

masala to this problem. 

We will say let the bars have lack of fit. We want to show that the answers remain 40, 

40, 40. Let us make it arbitrary. Let us say the three bars are either lack of fit or 



temperature effects, we have some initial values: e naught 1, e naught 2, e naught 3. 

Fine? Now, what will this cause in terms of forces? I will get fixed end forces. How do I 

find them out? Multiply it by minus k. I will get a compression and it is this value. 

Agreed? (Refer Slide Time: 39:00) Then, I have to shift this to the? Please pay attention. 

We have moved ahead. That you can sort out later. 

We have to find the joint forces. How do we do that? T D A transpose. You multiply this 

out; (Refer Slide Time: 39:18) you get some forces. So, these are forces in terms of 

arbitrary e naught 1, e naught 2, etcetera. You need to prove that these forces are not 

going to add to the member forces. That is a great proof if you can do that. 

(Refer Slide Time: 39:36) 

 

Let us see how to do that. Let us get the answers now. You have got the load vector now. 

I have inverted by k A A matrix, it will look like this. It is very easy to invert because it 

is a diagonal matrix. This is the load vector F A and this is the fixed-end force vector 

with a minus sign. With all that, the arbitrary e naught 1, e naught 2, e naught 3. When I 

actually do this multiplication, I will get some displacements; definitely, there will be 

displacements caused by these lack of fit issues. 



(Refer Slide Time: 40:21) 

 

So, I will get D A; I will D 1, D 2, D 3. Now, what should I do with these answers? Put it 

back and get the bar forces. That is what you will do. Hey presto; you do not get e naught 

1, e naught 2, e naught 3; they cancel out. You get only minus 40, minus 40, minus 40. 

This is a fantastic proof that in just rigid systems, indirect loading does not change the 

force field. It is a good demonstration. The reason is the structure is just rigid. 

(Refer Slide Time: 40:56) 

 

Now, this is a reading exercise. I put a star there. This is a complicated space truss. The 

triangle D E F is horizontal, but at this height 10 meter above ground. The triangle A B C 



is at the ground level and you got all these bars connecting them in space. I think we 

have done this problem by tension coefficient method. You have done it earlier; last 

year. Can you do it by stiffness method? If you can do this problem, you can do any 

problem because this is a small transmission line tower. The real one will be huge. So, if 

you can program this, you have done it. However, this is something I leave it and just 

find the bar forces. You can put the support restrains; you will find it statically 

determinate. 

(Refer Slide Time: 41:55) 

 

This is a reading exercise for you. You can go back to the book; it is a solved problem. 

Can you see the 3D picture? You have to identify the direction; the incidence of all the 

members. You have 18 global coordinates. This problem can be solved. Actually, we 

have solved it. It is demonstrated in the book; just go through it. Not to worry; in the 

exam, we are certainly not going to ask you these problems, but it is good. Those of you 

are interested you know that you can handle any problem by this method. 

With that, we have finished the reduced element stiffness method. I hope you have got a 

good grasp of it. Only one topic left - flexibility method; we will go through it fast 

because really speaking, matrix method using flexibility method is not good for 

programming especially when we have intermediate loads. However, still we should 

know the concept behind it. So, we will cover it in the next class. 

Thank you. 


