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Hello everyone. Welcome back to the SWAYAM NPTEL course on Mathematical Geophysics. 

This is Module 2: Fundamental Theorems, and we are going to begin Lecture Number 4 in this 

module. This lecture is titled Curl and Stokes' Theorem. In this lecture, the following concepts are 

covered. 

 

The overall idea of Curl and Stokes' Theorem is divided into various components. First, the basic 

concept of a curl. Then we look at different formulations of curl in various coordinate systems. 

Next is Stokes' theorem and then the interpretation of Stokes' theorem. Finally, we look at various 

applications of the curl operator and Stokes' theorem in geophysical studies. 

So let us begin. What is a curl? The physical concept behind the curl is the requirement to measure 

the rotational tendency of a field. The rotational tendency of the field can be understood with the 

help of the adjacent diagrams. In this diagram, you can see that the field lines circle around a given 

point P. 

 

The direction of the field lines is indicated by the red arrows. Note that the direction of the field is 

nothing but the tangent to the field lines. Due to this rotational character of the field, the field lines 

appear as circular lines. The field lines may also be elliptic or any other closed loop for the curl to 

exist. Thus, the measure of how much a field can circulate around a given location gives the curl. 

It is also important to consider the direction of the rotation. In these two figures, the direction of 

rotation is opposite to one another. We can see that the first picture indicates an anti-clockwise 

direction of the rotation, while the second figure in blue shows a clockwise rotational tendency. 

The curl of a field F is positive for an anti-clockwise rotational tendency, while it is negative for a 

clockwise rotational tendency. Next, the mathematical concept of a curl. 

Curl is a vector quantity which is obtained by the operation of the gradient vector as a cross product 

upon a velocity field. Next, the mathematical concept. Mathematically, the curl is a vector quantity. 

It can be obtained by operating the cross product between the gradient operator and the vector 

field. Thus, in vector calculus, the curl of a vector field F, having the components 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 in 

Cartesian coordinates, is represented as: 
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For the evaluation of the curl, let's say we consider the direction of the unit vector î. Neglecting 

the corresponding row and column, we could take the determinant of the remaining elements. So, 

the i-th component of the curl would result as shown above. 

Now, we will look at the various interpretations of the curl from a physical point of view. First, 

what happens if the curl of a field is zero? We have seen this in the previous lecture as an 

irrotational field. The field becomes irrotational, which indicates that the tendency of rotation is 

absent. For example, if the field lines, as shown in the sketch, are perfectly parallel to one another, 

then ∇ × 𝐅 = 0. 

If ∇ × 𝐅 ≠ 0, it indicates a rotational field. Now, if the curl of a field is positive, it indicates that 

the field has an anticlockwise rotation or a counterclockwise rotation. Then, on the other hand, if 

the curl of the field is negative, the field has a clockwise rotation. So, we can understand that the 

curl represents the rotational tendency or curvature of the field lines. 

Thus, we can understand that the curl physically represents the curvature effect of the field lines. 

If the field lines are more curved, then the curl is higher. And if the field lines are parallel to one 

another, then the curl vanishes. Next, we look at the expression for curl in different coordinate 

systems as relevant for geophysical applications. In the spherical coordinate system (𝑟, 𝜃, 𝜙), co-

ordinate, the curl is given as this expression. 

Note that the coefficients are not constant. In the cylindrical coordinate system (𝜌, 𝜙, 𝑧), the curl 

is given as this expression. Just like the divergence operator, cylindrical coordinates also have non-

constant coefficients for some of the terms, while other coefficients are constant. 

Next, we look at various vector identities, which are important to understand and interpret 

geophysical fields. 

The first vector identity indicates that the curl of the linear combination of two fields F and G is 

equal to the linear combination of the curl of the vector fields. 

∇ × (𝑎𝐅 + 𝑏𝐆) = 𝑎(∇ × 𝐅) + 𝑏(∇ × 𝐆). 

 

Next, we have the curl of a scalar multiple of the field equal to the gradient of the field crossed 

with the field itself plus the scalar function f multiplied by the curl of the vector field. 

∇ × (𝑓𝐅) = (∇𝑓) × 𝐅 + 𝑓(∇ × 𝐅). 

 

This is, in some sense, similar to the commonly used differential operator, where the derivative of 

the multiplication of two functions is obtained by keeping one of the functions constant and taking 

the derivative of the other. Since here a scalar function f and a vector field capital F are involved, 

we have the following two terms on the right-hand side. On the first term of the right-hand side, 

the field is kept constant while the scalar function undergoes a gradient operation, while the second 

term has the function f, a scalar field, held constant while the curl operator is operated on the vector 

field F. 
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The next vector identity is the curl of F cross G. 

Which is the curl of the cross product of two vector fields. It equals four terms. These four terms 

can be categorized into two classifications. First involving divergence quantities, and the second 

involving gradient quantities. This indicates that if a cross product of two vector fields is 

considered for an assessment of the curl operation or its curvature effects, then the concept of the 

divergence of individual fields and the gradient of individual fields comes into consideration. If 

the gradients and divergence exist in the field, then the curl will have a finite value. 

∇ × (𝐅 × 𝐆) = (𝐆 ⋅ ∇)𝐅 − (𝐅 ⋅ ∇)𝐆 + 𝐅(∇ ⋅ 𝐆) − 𝐆(∇ ⋅ 𝐅). 

 

Next, we have the fourth identity, which is the curl of the curl of F, which is essentially a double 

curl operation. This is similar to the second-order derivative of a function. The double curl operator 

can be broken down into two components. The first component involves the gradient of the 

divergence of F. We can understand that all these terms involve second-order derivatives, as one 

derivative occurs for the gradient while the other occurs for the divergence operation. The second 

term is nothing but the Laplacian operator on the field F. 

 

∇ × (∇ × 𝐅) = ∇(∇ ⋅ 𝐅) − ∇2𝐅. 

The fifth identity indicates that the curl of any gradient of a scalar field equals zero. Next, the 

divergence of the curl of any vector field equals zero. These two identities can be interpreted as 

follows. When the curl of a scalar field goes to zero, it means that the scalar field is behaving as 

parallel lines, which indicates that the gradient of F is irrotational. Thus, we can assume or 

conclude that the gradient of scalar fields are irrotational quantities. 

 

∇ × (∇𝑓) = 0. 

Similarly, the curl of F has a divergence equal to zero, which means that the curl of any vector 

field does not diverge or converge. 

∇ ⋅ (∇ × 𝐅) = 0. 

With the basic ideas in place regarding the curl operator, we have the essential tools to understand 

the Stokes theorem. Stokes theorem is essentially a bridge between the rotational behavior of a 

field and the circulation of the field along the boundary. Consider this closed loop. S denotes the 

surface area which is enclosed by the loop L. 

The Stokes theorem relates the behavior of a field at the boundary and the interior of this loop. 

Consider this surface and the loop bounding it to be in a field F. Then the Stokes theorem is an 

understanding of the behavior of the field inside the loop while just looking at the properties of the 

field on the bounding line. Mathematically, it relates surface integrals to line integrals: 

∮𝐅
𝐿

⋅ 𝑑𝐥 = ∬(∇ × 𝐅)
𝑆

⋅ 𝑑𝐒. 

Recall that the Gauss theorem is also a similar quantity which relates volume integrals to surface 

integrals. 
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Thus, Gauss theorem and Stokes theorem can be understood in similar lines. Have a look at the 

adjacent diagram. This diagram is a clearer version of the sketch just drawn. We have the field F 

vector and the area S and the bounding line L. Consider a small region which has the normal vector 

n̂ having an area 𝑑𝑆. This region has the boundary elemental lines as 𝑑𝑥 and 𝑑𝑦. 

Now, Stokes' theorem relates the circulation with the flux of the curl. What is circulation? 

Circulation is the line integral of the field along the bounding line. So, the circulation of the field 

F per unit area can be given as the ratio of this circulation to the area over which the circulation is 

calculated along the boundary line. The curl of F in the direction of the perpendicular vector n̂ can 

be obtained as follows: Thus, in the limit as the area goes to zero, that is, 𝑑𝑆 → 0, the area element 

is approximately an element of the tangent plane. 

The surface at the point in 𝑑𝑆. This leads to the fact that (∇ × 𝐅) ⋅ 𝐧 equals the limiting value of 

the line integral. This can be understood by considering the convergence of the entire area to a 

single point. If this area reduces to a single point, then the line integral and the flux become equal 

because the field lines are nothing but the tangent to the bounding lines. Thus, Stokes' theorem can 

be obtained by integrating on both sides, which results in the flux of the curl. 

Thus, Stokes' theorem can be obtained as follows. Note that Stokes' theorem involves first the 

circulation and second the flux of the curl. So, it is an interesting theorem that relates the flux of 

the curl of a field to the line integral of the field. Next, we look at some interpretations of Stokes' 

theorem. If ∇ × 𝐅 = 0 at each point in a region, then the line integral would also go to zero. 

This happens because, by Stokes' theorem, the line integral is equal to the flux of the curl. Since 

the curl is zero, the flux also reduces to zero. So, we can obtain without further calculation that the 

circulation of the field becomes zero. This is valid for every simple closed loop inside the region 

or enclosing the region. This has the implication that F is a conservative field. 

For conservative fields, the circulation is independent of the path of integration from A to B, which 

are two points in that region. For example, if ∇ × 𝐅 = 0 over this entire surface S, then any line 

integral within the surface would be equal. This would indicate that F is a conservative field. In 

line with previous discussions, we have understood that if F is a conservative field, then it can 

have a scalar potential. The scalar potential is a quantity 𝑉 such that: 

𝐅 = −∇𝑉. 

Now, having gone through the various aspects of curl and Stokes' theorem, we look into the various 

applications of the curl and Stokes' theorem in geophysics. First of all, the electromagnetic method, 

which is used in geophysics for exploration and related energy resource estimations. Faraday's law 

is of utmost importance. Faraday's law indicates that: 

∇ × 𝐄 = −
∂𝐁

∂𝑡
, 

where E is the electric field and B is the magnetic field. This means that if the magnetic field varies 

with time, the curvature of the electric field increases or decreases as the case may be. 

So this is used in natural electromagnetic phenomena like the Earth's magnetic field and 

magnetotelluric investigations. In the second application, which is related to geophysical fluid 
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dynamics and oceanography, vorticity is a very important quantity. The vorticity field is nothing 

but: 

𝛚 = ∇ × 𝐯, 

where v is the velocity vector. This means that if the velocity vector is such that the particles are 

moving in such a manner that the velocity field lines have curvature, then the vorticity field 

becomes non-zero. So we can understand that the circulatory motions of various fluid particles 

would give rise to vorticity fields. 

Now, vorticity fields are used to measure local rotational tendencies, which are used in modeling 

ocean currents and eddies. They are also used to analyze atmospheric circulations such as cyclones, 

anticyclones, and jet streams. Thus, the curl operator denotes a source or sink of circulatory 

motions in the form of a vorticity field. Having gone through the various aspects of the curl and 

Stokes' theorem and their relation to geophysical applications, it can be understood that the curl 

and Stokes' theorem are of utmost importance in various geophysical applications such as oceanic 

and atmospheric circulation patterns, electromagnetic field dynamics, and geomagnetic surveys. 

We have also looked at seismic wave propagation and rotational components in seismology as 

applications of various fields and vector operations in previous lectures. It is also important to 

understand that the curl and Stokes' theorem can be applied to such geophysical applications. Plate 

tectonic stresses and mantle convection analysis also make use of vector fields, and their curves 

help in interpreting various geophysical phenomena. Thus, the curl and Stokes' theorem would be 

very useful tools for geophysical applications. One can look at the following references for a better 

understanding of the curl and Stokes' theorem and their applications in geophysical studies. 

Thank you. 

 


