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Hello everyone. Welcome to the Swayam NPTEL course on Mathematical Geophysics. We will 

continue with the third lecture of module two, the fundamental theorems. This lecture is titled 

Divergence and Gauss Theorem. In this lecture, the following concepts are covered. The 

divergence and Gauss theorem. The components of this lecture are concepts of divergence, the 

divergence in different coordinate systems, the Gauss theorem, and application of Gauss 

theorem in geophysical studies. Let us begin. What is divergence? 

As the name suggests, divergence indicates a spreading out or convergence of field lines. It is 

a measure of the degree of spreading or converging of field lines at a particular point in space. 

It provides an idea about how a source or sink of a field behaves at a particular locality in space. 

It can be understood with the help of adjacent diagrams. Consider these two diagrams. 

The left diagram shows a divergent field. This is the point in consideration, and the divergent 

field acts in such a manner that the field lines spread out from this point. Such a divergent field 

can also be categorized as a source. Second, we look at the convergence of a field. The 

converging field acts in such a manner that the field lines converge to a specific point. 

It can also be termed as a field sink. Mathematically, the divergence is a scalar quantity. It can 

be obtained as a result of the divergence operation on a vector field. From vector calculus, we 

have already looked at the concept of gradients. Now, the gradient operator operates as a scalar 

product with a field in a manner shown below, giving the divergence. 

Thus, the divergence operation is nothing but the scalar product of the gradient operator with 

the field F. The divergence operator results in a scalar quantity. This shows the divergence 

operator is the sum of three individual components, such as the partial derivative of the field 

with respect to x, with respect to y, and with respect to z of the respective components. These 

are the components of the field in Cartesian coordinates x, y, z. And the divergence of F is the 
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divergence operator. Consider this special case where the point P under consideration observes 

or experiences zero divergence. 

The zero divergence is indicated as the number of field lines passing through point P is equal 

to the number of field lines emanating from point P. Thus, this is neither a source nor a sink. It 

can be considered as a neutral or stagnant point. The various physical interpretations of 

divergence follow. Before that, we look at some of the mathematical interpretations of 

divergence. 

What is meant by the divergence of F greater than 0? Divergence of F being positive means the 

field emanates in the outward direction and indicates that the field is associated with a source. 

If the divergence of a field is negative, it means that the field converges inward and indicates 

the presence of a sink. Consequently, if the divergence of F is zero, then the field neither creates 

nor destroys. This indicates the absence of a source or sink. 

Thus, the divergence can be understood as a measure of the presence of emanating field lines 

or converging field lines, and the geometrical representation of various fields in terms of 

divergence can be very useful for understanding and interpreting geophysical data. Now we 

will have a look at the details of divergence in different coordinate systems. First, let us have a 

look at the spherical coordinate system, where the vector field is given as the three components 

in radial, azimuthal, and polar angles. In the spherical coordinate system, the divergence is 

given by this formula. The peculiarity of the divergence of a field in spherical coordinates is 

the non-constant coefficients of the partial derivatives. 

Next, the cylindrical coordinate system. In the cylindrical coordinate system, a vector field is 

represented by the three components in radial, azimuthal, and axial directions. The divergence 

of a field in cylindrical coordinates can be represented as the following expression. In 

cylindrical coordinates, the divergence operator has non-constant coefficients for the radial 

coordinate as well as the azimuthal coordinate. While the axial coordinate has a constant 

coefficient. 
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Next, we look at some vector identities concerning the divergence. Consider two vector fields 

denoted by �⃗⃗�   and �⃗⃗�  . A scalar field F and two scalar values A and B. Now, the first vector 

identity is given as follows. This vector identity reads as the divergence of A�⃗⃗� + B�⃗⃗� .  equals A 

times the divergence of  �⃗⃗�   plus B times the divergence of �⃗⃗� . 

∇⋅(A �⃗⃗� +B�⃗⃗� ) = A∇⋅ �⃗⃗� +B∇⋅�⃗⃗�  

The left-hand side of this vector identity indicates the divergence of the sum of the vector 

quantities �⃗⃗�  and �⃗⃗�  combined through a linear combination. While the right-hand side denotes 

the sum of the divergence of individual vector fields weighted by the coefficients A and B. The 

identity signifies that the divergence operation and the sum operation are interchangeable. The 

next vector identity concerning divergence is given as: The divergence of the curl of a vector 

field is always equal to zero. 

This identity can be better understood with the help of a simple sketch. Consider the field lines 

occurring as closed loops, with the field direction indicated by the arrows. We can see that these 

field lines are concentric circular curves. These field lines have a finite curl since the field lines 

are closed loops. But the divergence of these field lines is zero because the number of field 

lines passing through any point is equal to the number of field lines leaving the point. 

As we can see, a point P has one field line entering and one field line exiting it. Thus, the 

divergence of the curl of any field is always equal to zero.  

∇⋅(∇× �⃗⃗� )=0 

The next identity is given as: The divergence of F times vector field  �⃗⃗�  equals the gradient of 

F dotted with  �⃗⃗�  plus F multiplied by the divergence of �⃗⃗� .  

∇⋅(F �⃗⃗� )=(∇F)⋅ �⃗⃗� +F(∇⋅�⃗⃗�  

The left-hand side of this identity indicates the divergence of a vector which is weighted by the 

scalar field F. On the right-hand side, we have two terms. 
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The first term indicates the projection of the gradient of F onto the field  �⃗⃗� . In addition to that, 

the second term indicates F weighing the divergence of the field  �⃗⃗� . The final identity which 

we are discussing in this lecture is given by the divergence of  �⃗⃗�   × �⃗⃗�   equals the curl of  

𝑭 ⃗⃗  ⃗projected onto the �⃗⃗�  vector minus  �⃗⃗�  dotted with the curl of �⃗⃗� .  

∇⋅(�⃗⃗� ×�⃗⃗� ) = (∇× �⃗⃗� )⋅ �⃗⃗� −�⃗⃗� ⋅(∇×�⃗⃗� ) 

The left-hand side indicates the divergence of a cross product of two vectors. The right-hand 

side has two terms. 

The first term is the projection of the curl of the first vector field onto the second vector minus 

the scalar product of the vector field  �⃗⃗�  with the curl of the second vector field. These identities 

are very useful in understanding in furthering our understanding and analysis of geophysical 

fields. Next, we will look into Gauss’s theorem. Gauss’s theorem is the relation between the 

flux of a field through a closed surface and the divergence of a field within the volume enclosed 

by that surface. 

Consider this as a closed surface. Now, this surface has a surface area and an enclosed volume 

V. Gauss’s theorem is a relation between the flux of a field passing through the closed surface 

and the divergence of the same field within the volume of this contoured surface. This is more 

clearly depicted in the adjacent diagram. Here, V is a large volume, and dV are the 

corresponding volume elements. �⃗⃗�  

The outflow of the field F from each such elemental volume dVi  is given by the divergence of 

�⃗⃗�  dotted with dVi. Thus, the total outflow can be measured or obtained as the sum of all such 

fluxes. As dV tends to the 0 limit, the total outflow is given by the integral of the divergence of 

�⃗⃗�  over the whole volume V . The shaded area in this volume indicates the region occupied by 

that volume. The field lines are indicated in red color, while the normal vector to the surface S 

is indicated by the blue line and vector n · dS. 

Now, the flux of the field F through this surface dS, which is an elemental surface area in the 

direction of this unit vector indicated by the blue line, is given by �⃗⃗�  · ndS. This we have seen 
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in the previous lecture. In the limit as dS tends to 0, the total flux can be obtained by the integral 

of this elemental flux. As the two quantities are the same from physical considerations, the 

Gauss theorem can be stated as: 

   

∫ (
 

V
∇ · �⃗⃗� )dV = ∮  

 

S
�⃗⃗�  · ndS 

   

Thus, the Gauss theorem can be stated as the left-hand side is the integral of the divergence of 

�⃗⃗� , which is multiplied with the elemental volume and integrated over the entire volume. The 

right-hand side indicates the flux of �⃗⃗�  passing through the surface and integrated over the entire 

surface gives the equal magnitude. Thus, the Gauss divergence theorem indicates the content 

of the field line within a three-dimensional body. The left-hand side depends on the field lines 

contained in the body, while the right-hand side is the measure of the same quantity just from 

the consideration of the surface area. Gauss’s theorem is very useful when one has the 

measurements on the surface but doesn’t have the measurements in the interior of the body. 

In that case, having the knowledge of the flux over the entire surface, one can infer about the 

properties and characteristics of the field that exist within the entire volume which is covered 

by that surface. Applications of Gauss’s theorem abound in geophysics. For example, in 

atmospheric and oceanic circulations, it is well known that the divergence of wind velocity can 

be used to study atmospheric processes. Due to the pressure gradient, the wind flow field 

diverges from high-pressure to low-pressure areas. It can be understood by looking at this 

figure. 

H indicates a high-pressure area, while L indicates a low-pressure zone. It can be seen that the 

field lines of flow diverge from the high-pressure zone. While the flow field lines converge into 

the low-pressure zone. Thus, the divergence of the velocity field is positive for the high pressure 

zone, while the divergence of the velocity field is negative for the low-pressure zone. The 

interaction between the high and low-pressure zones creates an interacting vector field between 

these two local zones. 
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This results in a complicated wind pattern and air circulation patterns. In between this high and 

low-pressure zone, there exists a pressure which is midway, or the gradient of the pressure at 

this point may be equal to the minimum or maximum. In between these two zones exists a point 

P where the field lines behave in such a manner that the divergence goes to zero. If we consider 

the flux of a surface over this entire high and low-pressure zone, then we might conclude the 

features of this combination of the high and low-pressure zones. However, if we take a surface 

which encloses only the low-pressure zone, for example, we can conclude that the divergence 

of the velocity will be negative as the field lines will be entering this surface. 

From the surface measurements only, we can understand from the converging field lines that a 

low-pressure zone may be existing inside this closed surface without making any measurements 

in the interior of this surface. This is the usefulness of Gauss’s theorem. This is the usefulness 

of Gauss’s theorem. Next, we have the example from hydrogeology. In hydrogeology, the 

divergence of the vector field U is used to investigate the recharge and discharge rates in 

aquifers. 

If the divergence of U is positive, then the aquifer is recharging. On the other hand, if the 

divergence of U is negative, then it is discharging. Thus, from the ideas and details of the 

discussion in this lecture, we come to the following conclusions. First, to understand the Earth’s 

structure and dynamics from local point-based to global regional scales, divergence and 

Gauss’s theorem are of paramount importance. Gauss’s theorem and divergence concepts can 

be applied to conservation laws very effectively. 

For example, conservation of mass, energy, and momentum can be expressed in terms of 

divergence. Divergence and Gauss’s theorem can also be used to model complex interactions 

in Earth’s atmosphere, oceans, as well as crust and deep interior, such as the core of the Earth. 

So, we have discussed various concepts of flux, gradient, and divergence, and Gauss’s theorem, 

which are fundamental theorems in these lectures, and we will be looking into various 

geophysical applications in further lectures. Thank you. 


