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Hello everyone Welcome to the SWAYAM NPTEL course on Mathematical Geophysics. In this 

lecture, we are going to start module number 2. This module is called Fundamental Theorems. 

This is the first lecture of module 2, titled Scalar Field and Gradient. 

In this lecture, we are going to cover the following concepts: the scalar field and gradient. This 

is the overall focus of this lecture. The components of this lecture are as follows. The concept 

of a scalar field will be discussed first. 

Then, the gradient of a scalar field, followed by directional derivatives of scalar fields. Then, 

we will be looking into some properties of the gradient and directional derivatives. Next, we 

will be considering gradients in different coordinate systems, as we have discussed in previous 

lectures. The applications in geophysics will be discussed side by side. So, let us begin. 

The Concept of a Scalar Field, What is a scalar field? That we have discussed briefly in previous 

lectures. We have discussed what a scalar is. We have also discussed what a field is We have 

also discussed scalar fields in the context of temperature, pressure, etc., in geophysical 

applications. Now we will look at the details of scalar fields in particular. First, the physical 

concept. What is the physical concept behind a scalar field? 

A scalar field is a concept that assigns a value, either positive or negative, in numerics or 

functional values, or both, for each point in space and time. They can also vary over space and 

time in a continuous manner. Mathematically, this can be represented as real-valued functions 

that depend on either spatial coordinates or both spatial and temporal coordinates. This can be 

represented as a function of x, y, z in Cartesian coordinates, which is only space-dependent, 
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while a function of x, y, z, and t in Cartesian coordinates represents spatial-temporal functions 

or fields. 

Next, we will look into the geometrical concept of a scalar field. This we will combine with the 

geometrical representation as we discussed in the previous lecture. Consider the figures shown 

adjacently. The scalar field can be represented in either one, two, or three dimensions. 

For example, in one dimension, we can have a horizontal or axial profile of a scalar field. 

We have taken the example of temperature as a scalar and the Cartesian coordinate system for 

the representation of a one-dimensional field. In this figure, the axial direction is shown by the 

arrow marked Z, and the temperature is only a function of Z, making it a one-dimensional field. 

The blue line shows a linear temperature profile, while the red line shows a non-linear 

temperature profile. Both are one-dimensional scalar fields. Similarly, we can extend this 

concept to two dimensions, taking temperature again as the scalar field as a function of x and 

z. This gives a two-dimensional domain over which we can represent the temperature scalar 

field in the form of contours. 

These contours represent assigned values and are colored to represent a visually appealing 

structure. Like this, we can assign positive and negative values to temperature contours as the 

case may be. Extending this further, we look into the three-dimensional representation of a 

scalar field. In three-dimensional representation, we choose the isosurfaces as the geometrical 

representation of the scalar field. In this diagram, the scalar field is chosen as the axial helicity. 

What is axial helicity? Axial helicity is defined as the scalar product of velocity and the curl of 

velocity. The scalar product operation and the curl operation were discussed in previous 

lectures. The H vector is the helicity vector, and its Z component is the axial helicity. We have 

chosen the Z component, HZ, as the scalar field for plotting the three-dimensional isosurfaces 

in a spherical domain. 

Have a look at this picture. This represents a three-dimensional figure with all the axes, X, Y, 

and Z, shown clearly. The positive and negative values of the axial helicity are shown in 

different colors. This is a three-dimensional geometrical representation of a scalar field. Such 
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representation can be adapted for any scalar field and appropriately shown in either one, two, 

or three dimensions. 

In geophysics, these scalar fields and their representations are of paramount importance. For 

example, in geothermal studies, the map of the temperature field within the Earth and its surface 

is represented using scalar fields. Using that, the heat flow, energy, and thermal gradients within 

the mantle or crust can be easily depicted and further analyzed for better understanding. Also, 

another geophysical application concerning hydrogeological studies considers the pressure 

field in a groundwater reservoir to assess water flows, groundwater contamination, and other 

studies. 

Gradient of a Scalar Field Now let us look into the gradient operator acting on scalar fields. 

The gradient of a scalar field is used in various applications where the differences in the values 

of the scalar are important. For example, in the transfer of heat energy, the temperature is not 

as important as the gradient of temperature because the gradient of temperature is what drives 

the heat transfer. 

Similarly, in fluid flows, it is the gradient of pressure that forces the fluid to flow. Thus, it is 

very important to understand the concept of the gradient of a scalar field. The physical concept 

of a scalar field gradient is described here. The physical concept is how a scalar field varies in 

space or time; its rate of change is considered the gradient of the scalar field. In most 

applications, the predominant use of the gradient occurs spatially. 

The mathematical concept behind the gradient of a scalar field results in a vector field, which 

points in the direction of the steepest rate of increase or decrease of that scalar field. We can 

understand this with the help of the adjacent diagram. Consider this diagram shown here, 

depicting a paraboloid surface. Now, this paraboloid surface represents the values of a scalar 

field over a two-dimensional domain in x and y coordinates. The values of the scalar field 

assume a paraboloid structure. 

Now, at any point, as shown here on the paraboloid surface, we can look into the gradients in 

various directions. For example, at this point, the gradients or the change in the values of the 
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scalar fields in any of these directions can be calculated. But the gradient, as defined by the 

formula here, gives the direction in which the change is maximum. This is the gradient of the 

scalar field F. The gradient operator in Cartesian coordinates is defined as: 

k 

This results in the gradient vector. Now, this is the mathematical form. Now, it is important to 

understand that for any complicated structure, apart from paraboloid surfaces, the gradient of a 

scalar field will give the direction of maximum change. Whether it is increasing or decreasing, 

the change occurring in the direction where it is maximum will be obtained if one calculates 

the gradient of a scalar field. Now, coming to applications in geophysics. 

The most prominent applications of scalar fields and their gradients in geophysics occur with 

respect to the thermal gradient and pressure gradient. The thermal gradient is used to study the 

rate of heat flow in the lithosphere and mantle. Now, recall that Earth’s interior is made up of 

various layers. In a broad sense, this can be considered as a schematic diagram of the interior 

of the Earth. The inner core is at the center with an overlying fluid outer core. 

On top of it lies the mantle, and the surface and depth of the subsurface can be included in the 

lithosphere or crust. As we know, the temperature is very high in the center of the Earth, 

approximately 7000 Kelvin, and it decreases upwards right up to the surface of the Earth. So, 

this gradual change in temperature across the depth of our planet presents the thermal gradient. 

As a result of this thermal gradient, heat flows outward from the center of the Earth towards 

the surface. This is also known as secular cooling. 

Also, near the surface, geothermal reservoirs present a practical area to understand and measure 

the geothermal gradients. We also know of volcanoes and tectonic regions where the activity 

involves thermal gradients, where molten lava is thrown out from volcanic eruptions and 

tectonic plates grind against each other, developing thermal gradients. So, we can see and 

understand various geophysical phenomena with respect to the thermal gradient and understand 

the heat transfer and energy transfer occurring in the planet’s interior as well as near the surface. 

Similarly, the pressure gradient. 
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The pressure gradient is usually considered where fluid flows occur in geophysical 

applications. Prominently, groundwater flows and aquifer behavior are modeled using the 

pressure gradient. It is important to understand and measure what the pressure gradient 

behavior is for groundwater flows to determine the extent of groundwater and the flow to 

efficiently trap the groundwater. Another aspect where the pressure gradient is used in 

geophysical applications is in the oil and gas industry. In hydrocarbon reservoirs, oil and gas 

move through porous media and get collected in reservoirs. 

So porous media are nothing but solid structures with perforations through which fluid can 

flow, and these flows are driven by pressure gradients. Thus, geophysical applications in the 

gradient of a scalar are abound. Next, we come to the discussion on the directional derivative 

of a scalar field. The mathematical concept behind the directional derivative is shown here. 

Directional Derivative of a Scalar Field The directional derivative of a scalar field can be 

understood by looking at the adjacent figure. In this figure, F is a surface or any curve in a 

scalar field. And the gradient is shown as the gradient of F. Now, the gradient is calculated 

using the formula we discussed in the previous slide. This represents the direction of the scalar 

field. 

The gradient of F can either increase in one direction or decrease in another direction. 

Therefore, the rate of change of the scalar field profoundly occurs in a direction-dependent 

quantity. Therefore, the rate of change of a scalar field profoundly the gradient of F can either 

increase or decrease in directions. The gradient of a field can increase either in one direction or 

decrease in another direction. 

Therefore, the rate of change of a scalar field is a directionally dependent quantity. This makes 

it important to understand the gradients in particular directions. Thus, the directional derivative 

Duf of a scalar field f in the direction u is defined as follows. Here, u is the chosen direction. 

The blue arrow shows the direction in which the directional derivative of the scalar field is to 

be computed. Thus, Duf represents the gradient of the scalar field projected onto the particular 

chosen direction. 
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This can be simplified as: 

Duf  =  ∇f · u 

where ∇f is the gradient of f and u is the unit vector in the chosen direction. Thus, the directional 

derivative of a scalar field is a vector quantity. Thus, the directional derivative of a scalar field 

can be computed and obtained as a scalar function itself. In geophysics, various applications 

make use of the concept of directional derivatives. 

For example, seismic wave propagation. In seismic wave propagation, the rate of change of the 

amplitude or travel time of seismic waves in particular directions is determined to calculate the 

energy that is being dissipated in that particular direction. The wave propagates in all possible 

directions. However, it may be imperative to locate the amount of energy that is propagating 

along a fixed direction. Thus, in that scenario, the directional derivative will come into the 

picture. 

This is also used to compute the anisotropy of various materials. What is anisotropy? 

Anisotropy is the direction-dependent properties such as density and elastic modulus of any 

rock samples. For example, if this is a rock sample, its density may be different along different 

directions. This can happen because the rock may be composed of various combinations of 

minerals having different densities. It may be important to understand the density variation 

along particular directions. In other applications such as atmospheric and oceanic studies, 

directional derivatives also play a very important role. We all know by now that the temperature 

gradient and pressure gradient are of utmost importance in oceanic and atmospheric flows and 

atmospheric behavior. Thus, it may be important to understand the flow in a particular direction 

as it can help in navigation and understanding the behavior of weather and climate. 

Also, the salinity variations in ocean currents can help us determine the interaction of river 

flows with oceanic flows and other aspects such as the migration of species and the harvesting 

of oceanic energy through tidal waves. In all these applications, the directional derivatives are 

important where we obtain the entire field of directional derivatives indicating the rate of 

change of that scalar under consideration. While the gradient gives the direction of maximum 

change, the directional derivative gives the entire scalar field. Now let us look into the various 
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properties of gradient and directional derivatives. The gradient may be positive, negative, or 

equal to zero, indicating an increase, decrease, or no change in any direction of the scalar field. 

Directional derivatives, on the other hand, if positive, indicate that f is increasing in that 

particular direction or vice versa. As directional derivatives’ negative values indicate the 

decreasing of f in the particular direction. The equipotential surface is the surface where the 

directional derivatives of a scalar function obey these constraints, which indicate that all the 

points of the surface have the directional derivative equal to zero. This defines the equipotential 

surface. The equipotential surface may result either from the angle being 90 degrees, which 

makes the scalar product equal to zero, or the magnitude of the gradient itself going to zero, 

indicating a constant scalar field or equipotential surface. 

Thus, the gradient of F is always perpendicular to the constant surface of a scalar field. 

Now, we look at the gradient in different coordinate systems. In specific, we look at the 

spherical coordinate system where the applications of geophysics are of very much importance. 

This is the expression for calculating the gradient of a function in spherical coordinates, as we 

have discussed in previous lectures. Particularly, the geomagnetic field of the Earth is a very 

nice application where the gradient is used in the spherical coordinate system. 

The geomagnetic field, being a conservative field, has the potential V . This scalar potential for 

the geomagnetic field can be expressed in terms of functions known as spherical harmonics. 

The radial components of the magnetic field can be obtained by the gradient operator. For 

example, Br  denotes the radial component of the geomagnetic field, which is obtained by taking 

the gradient of the scalar potential V. The radial magnetic field is nothing but the negative of 

the partial derivative of the scalar potential with respect to the radial coordinate. Thus, from the 

expression for the scalar potential, the expression for the radial magnetic field can be obtained 

as given here. 

Notice the change in the exponent for r, which has changed due to the gradient operation. This 

indicates the use of gradient in the spherical coordinate system, which is very common for 

geomagnetic field calculations. Thus, from this lecture, we can obtain the following 
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conclusions. Scalar fields and gradients play a very vital role in geophysics. They describe 

various physical quantities and their spatial variations. 

The scalar fields and gradients also help to analyze and interpret geophysical data. That 

geophysical data can be used in the oil and gas industry for exploration or natural phenomena 

such as oceanic or atmospheric flows. The scalar fields, gradients, and directional gradients are 

essential concepts in geophysics. They provide a mathematical framework and a geometrical 

representation for describing and analyzing various geophysical phenomena and their 

spatiotemporal variations. One can refer to the following references for further understanding. 

Thank you. 


