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 Hello everyone. Welcome to the Swayam NPTEL course on Mathematical Geophysics. This is a 

continuation of module number 6, Wave Dynamics in Geophysics. This is lecture number 5 of this 

module, Internal Gravity Waves. In this lecture, the concepts covered are related to internal gravity 

waves. 

 First, we will look into the concept of internal gravity waves. Then, we will derive the internal 

gravity wave equation. Then, we will look at the dispersion relation, which governs the 

characteristics of the propagation of internal gravity waves. Finally, we will look into various 

geophysical applications that utilize internal gravity wave phenomena. So, let us begin. 

First, what is an internal gravity wave? Internal gravity waves are oscillations that occur within a 

fluid medium. This fluid medium can be either the ocean, the atmosphere, or the liquid iron of the 

Earth's outer core. In internal gravity waves, the restoring force is the force of gravity. Just like we 

had The Coriolis force acts as a restoring force for inertial waves. Now, these are dependent upon 

gravity as the restoring force; thus, they are called internal gravity waves. Internal because these 

waves occur within the fluid rather than on the surface of the fluid. The surface waves are different 

from the internal gravity waves. 

Now, two forces are important in internal gravity waves. First is the buoyancy force, which comes 

from gravity and stratification, which can be thermal or chemical composition. Now, these 

buoyancy forces interact with inertial forces of the fluid and generate the internal gravity wave. 

The inertial forces arise due to the acceleration of the fluid and its mass, while buoyancy forces 

are generated due to stratification. Thus, stratified fluids are a necessary ingredient for internal 

gravity waves. 

Now, we will understand what is meant by stratification. Stratification means the density varies 

with depth, such as thermoclines in oceans. In oceans, at various depths, the density of the water 

is different. Similarly, in the atmosphere, the density of the air is different at different heights. Like 

in the troposphere of the atmosphere, in the first 10 kilometers from the surface of the Earth, the 

density of the air changes. Such change in the density of the medium which is fluid leads to 

stratification and this is useful to generate buoyancy forces which governs the production of 

internal gravity wave. Now look at this diagram here. This diagram shows the formation of internal 

waves at the interface of two density layers.  

These are the two density layers. Below we have high density layer and above there is a low density 

layer. As we know low density layer lying on top of high density layer forms a stable interface 

which means that these immiscible fluids will not mix and there will be no upside down motion. 

Thus the high density layer will be always below the low density layer. Now if we perturb the 
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interface of these layers it will generate a wave. These waves are a type of internal gravity waves 

which are occurring within the fluid domain.  

These are not the same as the surface waves which are occurring at the top of the liquid. In this 

adjacent diagram, we can see the configuration of the system is such that we have one cold 

boundary at the bottom and hot boundary at the top. On both sides we have insulating boundaries. 

Now gravity is pointing downwards in this diagram and the setting is such that cold boundary at 

the bottom would lead to high density of the medium.  

The density is denoted by 𝜌. Now, due to the low density being above the high-density material, 

this system is a stable system. This can give rise to internal gravity waves within the fluid if 

perturbed. So, we can see that if there is a perturbation such as this one, where we have alternating 

layers of fluid motion such that each layer is of a different temperature, with alternating hot and 

cold fluids moving in opposite directions. This leads to an internal gravity wave.  

One can also see that the phase velocity is perpendicular to the group velocity. The phase velocity 

is the direction where the crests and troughs of the wave lie. Now, we can see that the crests, which 

are hot fluids, and the troughs, which are cold fluids, are aligned in the direction of fluid velocity. 

This is the direction where crest and trough follow one another. However, the fluid motion is 

perpendicular.  

The fluid transfers energy and hence information across in the perpendicular direction to the phase 

velocity. Thus, the group velocity is in the direction of the propagation of information. These are 

a few typical illustrations of internal gravity waves. Now, we will look into the rigorous 

mathematical details of internal gravity waves, their generation, and the dispersion relation, which 

gives their characteristics. The internal gravity wave equation.  

Now, to obtain the equation which governs the generation and propagation of internal gravity 

waves, we have to consider Newton's Reynolds decomposition equation. The Reynolds 

decomposition is given as follows. Here, 𝑃 is pressure, 𝜌 is density, 𝐮 is the velocity field, and 𝑇 

is the temperature. The star denotes a steady, time-independent factor. Thus, any quantity such as 

pressure or temperature can be decomposed into its background state, which is steady, and the 

perturbation state, which is unsteady.  

The background state is denoted by a star. And the perturbation state is denoted by a prime. Thus, 

we can say that the background state is a function of space only, while the perturbation state 𝑃′ is 

a function of both space and time. Let us consider the 𝑥-𝑧 plane in a Cartesian coordinate system. 

In the 𝑥-𝑧 plane, which is also equivalent to 𝑦 equals a constant, we have a continuously stratified 

and unbounded fluid.  

Let's say we are looking at the 𝑦 = 0 plane in the 𝑥 and 𝑧 directions, as shown here. The fluid is 

unbounded, which means there are no boundaries. Then, we can look at the linearized diffusionless 

perturbation state governing equations. These equations can be obtained from Newton's laws of 

motion for fluids. We have looked into such equations previously in the formulation of inertial 

wave dynamics.  

We will also look into the heat transfer equation. These are the three equations. The first equation: 

∇ ⋅ 𝐔 = 0. If the divergence of any quantity equals zero, it means there is no input or output from 

the region under consideration, which implies the conservation of mass. Note that these equations 
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are written per unit mass. Hence, mass does not appear on both sides of this equation. The second 

equation is Newton's law of motion, where if we multiply 𝑚 on both sides, we will have mass 

times acceleration equals net force. If we remove mass from both sides, we have acceleration 

equals force per unit mass. Thus, the left-hand side is acceleration, which is given by 
∂𝐮

∂𝑡
, equals 

the right-hand side, which is force per unit mass, with the first term given by the pressure gradient. 

The second term is the buoyancy force.  

The pressure gradient forces can apply mechanical forcing for the fluid motion, while buoyancy 

forcing can induce convective flows in the fluid. Now, the third equation is the heat transfer 

equation. The first term is the evolution of temperature. The evolution of temperature with time is 

affected by the advection of temperature by the flow field. The advection of temperature is just the 

motion of a fluid parcel, which has a particular temperature, along the flow field.  

For example, if we have a particle like this of a certain temperature and the velocity field given by 

these arrows, then this particle will be moving in a path as shown by the dotted line. Now, as this 

parcel moves along this path, the temperature at various other regions will be changing because of 

the influx and outflux of temperature. Thus, the temperature at any point, such as this cross mark, 

will be enhanced or diminished based on the passage of this fluid parcel, which may have a certain 

high temperature. So, as this parcel crosses the crossing point, the temperature will rise and then 

it may fall.  

That would be detected by the evolution of the temperature term here. Thus, we are tracking the 

evolution of temperature and the velocity field through this set of equations. So, we are tracking 

the evolution of 𝐔 and 𝑇 using these three sets of equations. Now, in the stratified region, the 

density is assumed to vary only in the vertical direction. Thus, the temperature variation can be 

considered only in the vertical direction.  

Therefore, we have the thermally stable region defined as 
∂𝑇

∂𝑧
> 0 and the thermally unstable region 

defined as 
∂𝑇

∂𝑧
< 0. This can be understood as, let's say, we have hot and cold regions like this with 

gravity pointing downwards. Now Hot regions will induce lower density, while cold regions will 

induce higher density of the surrounding medium. Due to the condition that the low density lies 

below the high density, the consequence can be the high-density material taking the place of the 

low-density material. This overturning leads to instability. This unstable configuration can now be 

formulated as follows: considering this as the 𝑧-axis, and 𝑇1 and 𝑇2 as the temperatures of the cold 

and hot regions respectively, we have Now, 𝑧1 and 𝑧2 also represent the heights of the cold and 

hot planes.  

We can see that as 𝑧 points upwards, 𝑧1 is higher than 𝑧2. While 𝑇1 is lower than 𝑇2 because 𝑇1 is 

the colder temperature. Thus, the numerator is negative while the denominator is positive. This 

gives 
∂𝑇

∂𝑧
 as negative, which is an unstable configuration. The opposite configuration can be 

obtained by reversing the hot and cold planes.  

This ensures that 𝛥𝑇 becomes positive and 
∂𝑇

∂𝑧
 becomes positive. This is a stable configuration 

because the density now becomes like this: the hot region will induce low density, and the cold 

regions will induce high density. This is a stable configuration because low density will not have 

the tendency to overturn high density. Thus, this overturning is absent, making it a stable 
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configuration. This is given by the thermally stable region. 
∂𝑇

∂𝑧
> 0. Now, we look into the second 

term of the previous equation here. 𝐮 ⋅ ∇𝑇 can be written as the dot product between the 𝑢𝑧 and 
𝑑𝑇

𝑑𝑧
 

as there is no temperature variation along 𝑥 and 𝑦 axis. since the temperature varies only along the 

axial direction that is 𝑧. Thus, we have the heat transfer equation simplified to 
∂𝑇′

∂𝑡
= −𝑢𝑧

′ ∂𝑇
∗

∂𝑧
. Note 

that only 𝑇′ exists here as 
∂𝑇∗

∂𝑡
= 0 because 𝑇∗ is independent of time. On the right hand side we 

have 𝑢𝑧
′  multiplied by 

∂𝑇∗

∂𝑧
 with a minus sign. Now for the equation number 2 as shown here we are 

going to operate two operations that are given by these operators.  

The first operator is �̂� ⋅ ∇ ×. The second operator is the axial component of double curl of equation 

2. We have seen in previous lectures how to evaluate the curl. After evaluating the curl on this 

vector equation number 2, on both sides, we've obtained this equation where 𝜉 is ∇ × 𝐮. which is 

the vorticity and taking the 𝑧 component, we have 𝜉𝑧. This is the 𝑧 component of the vorticity with 

prime as the perturbation quantity. The pressure gradient term vanishes due to curl because ∇ × ∇≡
0.  

Thus, the third term ∇ × (𝛼𝑔𝑇′�̂�) also does not have any 𝑧 component. Since this equation is a 𝑧 

component equation, we do not have any component of the buoyancy term. Due to the operation 

of curl, the buoyancy term vanishes along the 𝑧-axis. Note that. Do not confuse between the 

buoyancy term along 𝑧 and curl of buoyancy term along 𝑧. The buoyancy term exists along the 𝑧-

axis.  

But the curl of the buoyancy term does not exist along the 𝑧-axis. Hence, equation number 5 has 

0 on the right-hand side. Now, the second equation. This equation is obtained after taking the 

double curl of the heat transfer equation. The double curl of velocity gives the Laplacian of 𝑢𝑧, 

and we have the 𝑧-component of the double curl of the buoyancy term given by 𝛼𝑔∇ℎ
2𝑇.  

The horizontal Laplacian is given by 
∂2

∂𝑥2
, while the total Laplacian is 

∂2

∂𝑥2
+

∂2

∂𝑦2
. Now, operating 

∂

∂𝑡
 

on equation number 6 gives us the second derivative of Laplacian with respect to time equals 

𝛼𝑔∇ℎ
2 ∂𝑇′

∂𝑡
. This we have obtained so that we can eliminate 

∂𝑇′

∂𝑡
 from equation 7 using equation 5. 

This we have performed because our aim is to eliminate 
∂𝑇′

∂𝑡
 using previous equations. Thus, we 

substitute equation number 4 to eliminate 
∂𝑇′

∂𝑡
. This gives 

∂2

∂𝑡2
∇2𝑢𝑧 = −𝛼𝑔

∂𝑇′

∂𝑧
∇ℎ
2𝑢𝑧

′ .  

This is coming from this equation where we have substituted 
∂𝑇′

∂𝑡
 here. Now, if we perform further 

algebraic derivations, we obtain equation 9 substituted into equation 8 gives. Now, substituting 

equation 9 into 8, we have −𝑁2∇ℎ
2𝑢𝑧

′ . where 𝑁2 denotes the Brunt-Vaisala frequency. This can be 

written in operatorial form as The operator ℒ is 
∂2

∂𝑡2
∇2 + 𝑁2∇ℎ

2  of 𝑢𝑧
′ = 0. Note that this is a wave 

equation. It has the components of a wave equation, such as the time derivative and the spatial 

derivatives as two terms for the velocity. This is the final form of the internal gravity wave 

equation. Now, the Brunt-Väisälä frequency, which we introduced in equation 10, is defined as 

√𝛼𝑔
∂𝑇′

∂𝑧
.  
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We can understand that the Brunt-Väisälä frequency depends on the thermal stratification 
∂𝑇′

∂𝑧
. 

Now, coming to the dispersion relation. The dispersion relation gives the properties of internal 

gravity waves that can be determined using normal mode analysis, similar to inertial waves. This 

is the normal mode expansion for the velocity perturbation 𝑢𝑧
′ . We have 𝑢𝑧

′ = 𝑢0𝑒
𝑖(𝑘𝑥+𝑚𝑧−𝜔𝑡). 

Here, 𝑘 and 𝑚 are wavenumbers along the 𝑥 and 𝑧 directions, respectively, while 𝜔 is the 

frequency. Having the normal mode analysis in space and time as waves, we substitute the 𝑢𝑧
′  

expression obtained in equation 3 into equation 12, which is the internal gravity wave equation. 

 Now, we have the simplified form as 𝜔2 =
𝑁2𝑘ℎ

2

𝑘2
. The 𝑘ℎ

2 is the horizontal wavenumber vector, 

which is nothing but 𝑘2. This is because the horizontal Laplacian is only in the 𝑥 direction, that is 
∂2

∂𝑥2
. This gives 𝑘ℎ

2 = 𝑘2, as 𝑘 is the wavenumber along 𝑥. The total wavenumber vector 𝑘2 is 𝑘2 +

𝑚2.  

Thus, we have the frequency-wave number relation given by this. This means that for waves 

having different wave numbers, the frequency of oscillation is different for internal gravity waves. 

Now, we come to the various applications of internal gravity waves in geophysics. First, we 

consider the atmospheric applications. Internal gravity waves transport energy and momentum in 

vertical and horizontal directions in the atmosphere.  

They affect atmospheric dynamics and weather patterns. As the atmosphere is layered, with higher 

density below and lower density above, it forms a stably stratified system. In this stably stratified 

system, internal gravity waves occur between the troposphere and stratosphere. The breaking of 

internal gravity waves can lead to the generation of turbulence, which contributes to mixing and 

affects weather patterns. Similarly, in the ocean, where stratification of the water exists with high-

density water below low-density water, internal gravity waves can occur in the ocean's interior.  

The interaction of internal gravity waves enhances the mixing of nutrients and gases in the ocean 

and leads to biological productivity and ecosystems. These waves are also useful in providing 

information about thermocline structures and vertical heat transport in oceans. Finally, in the 

Earth's core, where the fluid is liquid iron, internal gravity waves are generated. These internal 

gravity waves influence the geomagnetic field dynamics.  

The geomagnetic field fluctuations, which can be observed as secular variations on the surface, 

are somewhat affected by internal gravity waves. Internal gravity waves also affect the propagation 

of P-waves, which propagate through the Earth's outer core fluid. In conclusion, we can say that 

internal gravity waves are a fundamental type of wave, very prevalent in various natural 

phenomena related to geophysical applications. They are very important for Earth's dynamic 

processes, which are time-dependent and interconnected. It is important to note that internal 

gravity waves are periodic oscillations within stratified fluids in the interior.  

For internal gravity waves, the necessary ingredients are gravity, stratification, and a volume of 

fluid. The restoring force is the buoyancy force. Finally, internal gravity waves play a crucial role 

in various geophysical processes by influencing energy transfer, mixing, turbulence, and large-

scale dynamics within geophysical fluid applications. One can look into the following references 

for more information and applications of internal gravity waves. Thank you. 


