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Hello everyone, welcome to the SWAYAM NPTEL course on Mathematical Geophysics. We 

continue with module number 6, Wave Dynamics in Geophysics. This is lecture number 4, Inertial 

Waves. In this lecture, we will cover the following concepts. The concept of inertial waves in 

general, followed by the inertial wave equation. 

 

We will look into the dispersion relation of the inertial wave next. Next, we will consider the phase 

and group velocity of inertial waves. Finally, we will look into various geophysical applications 

of inertial waves. So, let us begin. The concept of inertial waves. 

The inertial wave is a type of oscillatory motion that occurs in rotating fluids. Rotation is an 

important and necessary criterion for inertial waves. The rotational motion generates the restoring 

force for the inertial wave. As we know, In rotational motion, the Coriolis force is a pseudo force 

that is generated when the observer is in a rotating frame of reference. 

The Coriolis force acts as a restoring force for inertial waves. So, this is a pseudo force—the 

Coriolis force—acting as the restoring force for inertial waves. Inertial waves occur in fluids. Now, 

we know that fluids don't sustain shear. But rotation adds a restoring force and a certain amount 

of rigidity to the fluids. 

This occurs because rotational dynamics enhance the vertical independence of the fluids. Vertical 

invariance means that any event occurring at various depths of a rotating fluid remains the same 

along the entire vertical axis. That is the axis of rotation. So, in rotating fluids, the most 

fundamental effect is that the velocity and accelerations—or these dynamics of the fluid—remain 

invariant along the axis of rotation. Now, this generates inertial waves, as inertial waves are 

triggered due to disturbances to this condition of no change along the rotation axis. 

Inertial waves depend on the rotational rate of the fluid and their ability to propagate in directions 

determined by the fluid's angular velocity. Now, inertial waves also play a crucial role in the 

dynamics of geophysical and astrophysical systems alike, such as oceans, atmospheres, planetary 

interiors, and stellar interiors. We will look at a simple sketch that demonstrates one of the inertial 

wave types. This is an example from COUNF 2010 in Ocean Dynamics. Now, consider the equator 

of the Earth, where the motions are such that above the equator in the northern hemisphere, the 

Coriolis force tends to move the fluid in a clockwise manner. 

This is occurring in the northern hemisphere for any fluid motion. Similarly, any fluid motion in 

the southern hemisphere experiences anticlockwise motion. This occurs because any fluid motion 

moving in the northern hemisphere is deflected to the right. Any fluid parcel moving in the 
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southern hemisphere is deflected toward the left. This gives rise to the clockwise or anticlockwise 

circular motions of the fluid in the northern and southern hemispheres. 

Now, this is occurring due to the Coriolis force, which is denoted by 𝐹. The Coriolis force is 

positive in the northern hemisphere and negative in the southern hemisphere. Now, why is this so? 

Suppose we look at the cross-section of the Earth. This is the equator. 

These are the northern and southern poles. Let us consider two points above and below the equator. 

Now, note that the rotational direction is given by the 𝛚 vector, which makes the Earth rotate from 

west to east. Now, at this location, we have the radial direction given by the rotation vector at these 

points. 

For example, this is the 𝛚 vector. The component of the rotation vector along the radial direction 

is this component. Now, this component points outward; hence, the Coriolis parameter 𝐹 is 

positive. On the other hand, any point in the southern hemisphere will have the Coriolis parameter 

pointed inward because that is the projection of the 𝛚 vector onto the radial line. Now, this inward-

pointing Coriolis force makes 𝐹 negative. 

Now, this change in the sign of the Coriolis force causes deflection toward the right in the northern 

hemisphere and, oppositely, toward the left in the southern hemisphere. This, in turn, gives rise to 

clockwise fluid motion in the northern hemisphere and anticlockwise fluid motion in the southern 

hemisphere. Now, consider the fluid motion near the equator. Suppose a fluid particle is near the 

equator. At this location, let's say, just above the equator, it experiences clockwise motion. 

It would turn like this, in line with the clockwise motion. Now, due to this, The particle motion is 

such that it crosses the equator from the northern to the southern hemisphere. Upon entering the 

southern hemisphere, it experiences anticlockwise motion. Now, this keeps repeating. 

This gives an oscillatory motion of the fluid parcel. This is an example of an inertial wave, which 

is caused by the Coriolis force. One can notice that there is a displacement of the fluid parcel in 

such a manner that it resembles an oscillatory motion or an inertial wave. We can also have inertial 

waves due to Such oscillations of a disc placed inside a volume of fluid. 

Now, this volume of fluid is rotating at an angular velocity 𝛚. Now, this oscillation of the disc sets 

the nearby fluid into motion. In such a manner that, suppose the disc moves upward, it compresses 

the fluid above it and diverges or rarefies the fluid below it. Now, this compression and rarefaction 

travel along the axis of rotation, since the rotating fluid tries to maintain no change along the 

rotation axis. So, this compression-rarefaction disturbance tries to move in the vertical direction 

as well as in the downward and upward directions. 

Thus, we have the inertial wave due to a vibrating disc inside a volume of rotating fluid. So, these 

are two typical examples of inertial waves from ocean dynamics and rotating fluids. Next, we 

consider the derivation of the inertial wave equation. The wave equation is governed by the balance 

between the inertial forces and the Coriolis forces. The inertial forces are nothing but mass times 

acceleration, and the Coriolis forces are the pseudo-forces that arise in a rotating frame of 

reference. 
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Let us consider an unbounded homogeneous fluid with density 𝜌. This is an unbounded 

homogeneous fluid. Its density is 𝜌. The rotation vector is 𝛚, which is constant. Now, let us 

introduce velocity perturbations 𝐔 about a state of rest in the rotating frame. 

Now, the linearized momentum equation using Newton's laws gives us, per unit mass: 

∂𝐔

∂𝑡
+ 2𝛚 × 𝐔 = −

1

𝜌
∇𝑃 

𝑃 is the mechanical pressure. Now, to proceed, we take the curl of the above equation. The curl 

operator is the vector calculus operator which we had discussed in the basic concepts. If we take 

the curl, we can have 
∂𝛏

∂𝑡
, where 𝛏 is the curl of 𝐔. Recall that the curl of 𝐔 denotes the vorticity. 

It denotes the rotational characteristics of the velocity field. Next, we also have the curl of 𝛚 × 𝐔. 

The curl of 𝛚 × 𝐔 equals 𝛚 ⋅ ∇𝐔 and other terms which go to zero due to the assumption of mass 

continuity, such as ∇ ⋅ 𝐔 = 0 and other gradients. So one can look into the various vector identities 

which we have looked at in the previous lecture and try to derive this expression. 

Thus, we have the vorticity equation: 

∂𝛏

∂𝑡
= 2(𝛚 ⋅ ∇)𝐔 

Now, again operating curl and a temporal derivative on equation 2, we get ∇ × 𝛏 = −∇2𝐔. This 

occurs from the vector identity. This is also an interesting result which one must try to obtain using 

the vector identities we had discussed in previous lectures. 

So curl and time derivative reduces this to this and u to del by del t of vorticity. So we proceed 

to get the inertial wave equation as 

 
∂2

∂𝑡2
(∇2𝐔) + 4(𝛚 ⋅ ∇)2𝐔 = 0 

This is the inertial wave equation. Here we have the time derivative del by del t square and the 

spatial derivative in the form of grad square. Now we proceed to obtain the dispersion relation. 

 

Now we proceed to obtain the dispersion relation. The dispersion relation is a relation between the 

wave numbers and the frequencies of any wave. The wave number is nothing but spatial frequency, 

where 𝜆 is the wavelength and 𝑇 is the time period of the wave. 

Now we proceed to obtain the dispersion relation. We use the method of normal mode analysis. In 

normal mode analysis, we break down 𝐔 in the form of normal modes, which are Fourier 

components expressed as 𝑒𝑖(𝐤⋅𝐫−𝜔𝑡). 

𝑒𝑖𝜃 can be written as cos𝜃 + 𝑖sin𝜃, where 𝜃 = 𝐤 ⋅ 𝐫 − 𝜔𝑡. Here we have used Euler's notation to 

represent the Fourier normal modes, which are nothing but sines and cosines. The 𝐤 is the wave 

number, and 𝜔 is the frequency. 
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We thus have the disturbance with 𝐔 = Re(�̂�𝑒𝑖(𝐤⋅𝐫−𝜔𝑡)). Note that the 𝐤 vector is the wave number 

vector. This indicates that the wave number is along each of the three axes of the Cartesian 

coordinate system, and the vector is 𝑘𝑥�̂� + 𝑘𝑦�̂� + 𝑘𝑧�̂�. 

Now we substitute this normal mode into the previous equation of the inertial wave. We obtain: 

𝜔2 ∣ 𝐤 ∣2 �̂� = −4(𝛚 ⋅ ∇)2�̂� 

We can simplify and solve for 𝜔 as: 

𝜔 = ±2
𝛚 ⋅ 𝐤

∣ 𝐤 ∣
= ±2𝜔cos𝜃 

Here cos𝜃 is the angle between 𝛚 and 𝐤. 

Thus, we can understand that for an inertial wave, the frequency is directly proportional to the 

rotation rate and the angle between the rotation rate and the direction of the propagation. It is 

important to understand that 𝐤 vector is the direction of the wave number vector. The direction of 

the wave number vector is a property of the pattern of the inertial wave. 

And this determines the frequency of the inertial wave. Thus, inertial waves of different patterns 

result in different frequencies. And this frequency is restricted from zero to 2𝜔. The minimum 

frequency is zero and the maximum frequency is 2𝜔. The maximum frequency occurs when 𝜃 =

0, which means that the pattern of the inertial wave is such that the wave vector �̂� is aligned with 

the rotation axis. This alignment gives 𝜃 = 0. 

Next we look into the phase velocity which is the direction in which the individual troughs and 

peaks of the inertial wave propagate. This is given by the ratio frequency to wave number. Thus 

we have: 

𝐜phase =
𝜔

∣ 𝐤 ∣
�̂� = ±2

𝛚 ⋅ 𝐤

∣ 𝐤 ∣2
𝐤 

Next, we have the group velocity. The group velocity is the direction in which the energy of the 

inertial wave propagates. This is obtained as the derivative of 𝜔, which is the frequency, with 

respect to 𝐤, obtainable from the dispersion relation. 

Thus, the group velocity, denoted by 𝐜𝑔, equals: 

𝐜𝑔 =
∂𝜔

∂𝐤
= ±

2

∣ 𝐤 ∣3
(∣ 𝐤 ∣2 𝛚 − (𝛚 ⋅ 𝐤)𝐤) 

Now, this is an interesting expression where we can see that the group velocity is such that for 

very small 𝛚 ⋅ 𝐤 ≪ 1, which can occur for very low frequencies or misalignment of 𝛚 and 𝐤, this 

results in 𝐜𝑔 being parallel to the rotation axis because this term goes to 0 due to the misalignment 

of 𝛚 and 𝐤, the dot product. We have only this term remaining, which makes the group velocity 

parallel to the rotation axis. This means that the information content or the energy of the inertial 

wave is directed along the rotation axis if the pattern of the inertial wave is such that it makes 𝛚 ⋅
𝐤 nearly negligible. 
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In geophysics, we have various applications of the inertial wave, such as understanding heat 

transfer, energy transfer, and fluid motions in Earth's ocean, atmosphere, and the outer core, which 

is liquid iron. In geophysics, the applications of inertial waves range from ocean mixing, 

atmospheric circulation, and understanding the dynamics of planetary systems and turbulent 

motions of the fluid inside the Earth's core. Particularly in atmospheric studies, as we have seen 

earlier, the Rossby and gravity waves are examples of inertial waves. They impact large-scale 

circulation, which occurs from the equator towards the pole and from the pole towards the equator. 

We also have high-latitude jet streams, which are affected by inertial waves. 

These jet streams are very important for navigation by planes across continents. They affect their 

speed and the duration of flights from one continent to another, as planes take advantage of these 

jet streams for fuel efficiency. Atmospheric dynamics are also influenced by inertial waves. In 

core dynamics, inertial waves play a very important role as they contribute to the growth and 

generation of the magnetic field, leading to an efficient geodynamo process. An efficient 

geodynamic process gives rise to a strong and stable magnetic field. 

Inertial waves and disturbances contribute to variations such as the secular variation of the 

geomagnetic field. Thus, inertial waves are an important category of waves that are very useful for 

geophysical applications. 

Thus, we come to the conclusion of this lecture. Inertial waves arise in rotating fluids. The restoring 

force is the Coriolis force, and these waves propagate at frequencies below the rotation rate. 

A fundamental understanding of inertial waves can improve various models of geophysical 

phenomena, such as oceanic circulation, atmospheric patterns, and planetary interior dynamics. 

The dynamics and characteristics of inertial waves can aid in climate prediction and fundamental 

research in geophysics. In particular, inertial waves have vast applications in ocean mixing, inertial 

oscillations, length-of-day variations, energy transfer, and ocean currents. 

Thus, we come to the end of the lecture on inertial waves. One can follow these references for 

more details on inertial waves. 

Thank you. 


