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Hello everyone, welcome to the SWAYAM NPTEL course on Mathematical Geophysics. This is 

continuing module number 6, Wave Dynamics in Geophysics. Today we are going to look at 

lecture number 3, which is Free Oscillation of the Earth. In this lecture, the following concepts are 

covered. We will be looking into the concept of free oscillation in general. 

 Then we will look into some fundamental mathematical and geometrical aspects of three-

dimensional standing waves in a sphere. Next, we will look into the various types of free 

oscillation: radial oscillation, spheroidal oscillation, and tangential oscillation. Then we will look 

into the comparison with surface waves, which we have discussed in the previous lecture. So let 

us begin. The concept of free oscillations. 

 Now, oscillations mean periodic displacements. In the context of geophysics, very large 

earthquakes can set the whole Earth into vibration. Now, this is not only a smaller region or a 

smaller section of the Earth. The entire Earth, as a spherical body, vibrates.  

Now, the vibration occurs with certain natural frequencies of the earth. This is determined by the 

elastic properties and the internal layer structure of the earth. We can understand the basics of free 

oscillations through this simple example. A one-dimensional vibration can be represented by the 

superposition of a number of vibrations.  

Now Consider these figures. The first one on the left is the fundamental mode. This is the diagram 

of a string fixed at both ends to rigid supports. Now, the string, upon disturbing it at the center, 

vibrates in various modes.  

These modes are nothing but the patterns shown here. The pattern which is the most fundamental 

and simplest is given here. This pattern has two nodes at the ends, which are due to the constraint 

that the string is fixed. Otherwise, there is no node at any other point in the interior of the string. 

A node means the displacement of that location is zero. 

 Next is the first overtone. In the first overtone, we have one internal node. This is the one internal 

node of the first overtone. Similarly, in the second overtone, we have two internal nodes. Now, 

these are the first three modes of vibration. 

 They are often called normal modes of vibration. These normal modes are associated with zero-

displacement points known as nodes or nodal points of the vibration. In the Earth's context, the 

free oscillations involve three-dimensional deformations. Now, this deformation being three-

dimensional represents the spherical deformations of the Earth. 
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 Now, from this one-dimensional example which we have seen here, we can look into the 

fundamental mathematical aspects. Here, in one dimension, to understand the motion or 

displacement, we need only one variable. Suppose this is the 𝑥-axis; then the displacement 𝑢 is 

only a function of 𝑥. It does not depend on the 𝑦-axis or 𝑧-axis. Thus, this is a one-dimensional 

oscillation. For two-dimensional oscillations, we would have 𝑢 as a function of 𝑥, 𝑦, and so on. 

So in a spherical shape, we have the vibrations or displacements 𝑢 as a function of all the three 

coordinates of the spherical system. Thus, we would be dealing with three-dimensional functions 

on a spherical body. Now, remember that in previous lecture we have discussed about functions 

on a spherical surface. Those were called spherical harmonics. So functions on spherical surface 

are spherical harmonics. 

 Now we have to look into the function on the radial axis which was not considered previously. As 

only 𝜃 and 𝜙 are covered under spherical harmonics. we remain, it is important to look into other 

functions which can represent the radial variations. Now a vibrating sphere which is displacement 

on the entire 𝑟-𝜃-𝜙 axis can be resolved into the superposition of normal modes. The normal modes 

are three-dimensional normal modes. They may have nodes or non-zero displacements which are 

nodal surfaces.  

Nodal surfaces are surfaces where the displacement goes to zero. Since it is a three-dimensional 

mode, the nodal points or nodal surfaces are two-dimensional. Just like we had in this example, a 

one-dimensional vibration has a nodal point as zero-dimensional points. So here we have the free 

oscillation function which is a function of 𝑟 𝜃 𝜙 given by 𝑆. This function is accompanied by three 

indices. The first index 𝑛 is the overturned number.  

Now, this overturned number indicates the number of internal nodal surfaces. Thus, the number of 

nodal surfaces is equal to 𝑛. Then, we have 𝑚 as the longitudinal order, which is the number of 

nodal lines on the sphere that are great circles or longitudes. Thus, the number of nodal longitudes 

is 𝑚. 𝑙 is the order, which is equal to the number of nodal lines that are latitudes. Thus, the number 

of nodal latitudes is 𝑙. This 𝑙 and 𝑚 are nothing but the indices of spherical harmonics 𝑌𝑙
𝑚. Thus, 

we have the rotationally symmetric oscillations, which are considered as 𝑚 = 0. Thus, we can 

understand that a simple particular case, 𝑚 = 0, is the rotationally symmetric oscillation, which is 

given by And thus, the oscillation function becomes 𝑆𝑛𝑙. Now, we look into the geometrical 

representations of these free oscillation functions. We have them separated as 𝑌𝑙
𝑚. which account 

for latitudinal and longitudinal functions of the spherical surface. And we have the spherical Bessel 

functions, which are given by 𝑗𝑛(𝑘𝑟).  

It is a function that depends on the radius. Now, we have looked into the spherical harmonics 

previously. If this denotes the spherical surface, then the vibration is given by the black lines. Now, 

this spherical harmonic is 𝑆2
0. Now, 𝑙 = 2, 𝑚 = 0, and 𝑛 = 0. 

 The 𝑛 = 0 means that this function remains the same for all the radii as given by the 𝑛 = 0 pattern. 

And 𝑙 = 2 means there are two longitudinal nodes. Now we look at the 𝑆3
0. Here 𝐿 = 3 and 𝑀 =

0, which means there are three longitudinal nodes. Note that we are looking at these functions 

from the top. 

 Similarly, 𝑆4
0 has four longitudinal nodes. Now we look at the spherical Bessel functions. The 

spherical Bessel functions are described as 𝑗𝑛(𝑘𝑟). Here 𝑛 is the overtone number having values 

0,1,2, and so on. For 𝑛 = 0, the function is given by the black solid line, and this is the radial axis. 
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One can see that there are no nodes with respect to the radius since the displacement is always 

positive. The first overtone, 𝑛 = 1, is given by this function. Here we can see that we have one 

radial nodal surface. 

 Now this 𝑅1 is the first and only radial nodal surface. The 𝑅 = constant is a surface inside the 

spherical body, and over this surface, the displacement always remains zero. Above this surface 

and below this surface, the displacement has opposite signs. Now we come to the second overturn. 

𝑁 = 2 gives the following Bessel function. It has two radial nodal surfaces.  

So 𝑟 = 𝑟1 and 𝑟 = 𝑟2 are the two spherical surfaces where the displacements go to zero. Hence, 

these are nodal surfaces. And the sign changes across the nodal surfaces. Similarly, three nodal 

surfaces for 𝑛 = 3. Now, having combined this 𝑌𝑙
𝑚 with 𝑗𝑛, we can get a function which is 

dependent on 𝑟, 𝜃, and 𝜙. For each value of 𝑛, 𝑙, and 𝑚, it represents a normal mode which can 

be used for representing the complicated three-dimensional standing waves, which are free 

oscillations on the spherical body. Now, we look into the various types of free oscillations. The 

free oscillations which occur for spherical bodies, such as Earth and other terrestrial planets, can 

be divided into three categories. First is the radial oscillation. 

 We have other oscillations, such as spheroidal and toroidal oscillations as well. The radial 

oscillation is purely radial displacement. The displacement 𝑢 is only a function of 𝑟. There is no 

dependency on 𝜃 and 𝜙. Next, we have spheroidal oscillation. The spheroidal oscillations are 

partially radial and partially tangential. 

 Now, this denotes a radial oscillation where the mean position is given by the surface of the Earth, 

then the surface of the Earth converges to the red and blue. Surfaces indicate inward and outward 

radial oscillations. Note that this oscillation is independent of latitude and longitude since the 

oscillations remain the same for all values of latitudes and longitudes. Whereas, tangential 

displacements are shown here. The tangential displacements are displacements on the surface of 

the spherical body. 

Now, these displacements tend to deform the surface. The tangential displacements are a function 

of 𝑟, 𝜃, and 𝜙 as well. This is the radial part of the spheroidal oscillation. And these are the 

tangential parts of the spheroidal oscillation. Thus, spheroidal oscillations are functions of all the 

coordinates: 𝑟, 𝜃, and 𝜙. Finally, we have the toroidal oscillations, which are purely tangential 

displacements. Here One can imagine that the upper hemisphere, which is the northern 

hemisphere, moves toward the left, and the southern hemisphere moves toward the right. So, this 

indicates that there is a shearing displacement with opposite signs above and below the equator. 

There are no radial oscillations.  

The radius of the sphere remains fixed. Only the surfaces are displaced in a tangential manner. 

These are the various types of free oscillations. Next, we have the radial oscillations, which we 

will discuss in more detail. The radial oscillations indicate that only radial motions are allowed.  

There are no tangential motions. The shape of the Earth remains fixed because the displacements 

are only in the radial direction and are invariant over latitude and longitude. Thus, all the particles 

vibrate only in the radial direction. These indicate radial motions where the particles are moving 

outward and inward only. This is the fundamental mode where the entire Earth expands and 

contracts in unison.  
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The higher mode of radial oscillation is shown in the adjacent diagram. Although we can see that 

the particles are vibrating radially, the direction of the motion of the particles may depend on 𝑟. 

This is the second normal mode. Consider this surface. At this surface, you can see that the 

displacements are either away from the surface or toward the surface, while there is no 

displacement of this radial surface. This radial surface, denoted by 𝑅 = 𝑅1, is a nodal spherical 

surface. 

 Here, the displacement equals zero. If there is only one nodal surface, this is the first overtone or 

the second normal mode. This is given by the 𝑛 = 1 Bessel function, which has only one single 

nodal surface, that is, 𝑅 = 𝑅. So, along the radial direction, we have one surface across which the 

sign of the displacement changes. Next, we have spheroidal oscillations. Now, spheroidal 

oscillations, as we have seen earlier, have two parts: the radial part and the tangential part.  

This can be described by the spherical harmonics 𝑌𝑙
𝑚. Remember that the details of spherical 

harmonics can be obtained from lecture number 5 of week 5. Now, we look into some aspects of 

the spherical harmonic functions as appropriate for understanding spherical or spheroidal 

oscillations. The spherical harmonic functions are defined through an axis through the Earth at the 

point of the earthquake epicenter. The spherical harmonic functions are also defined through a 

great circle that contains that axis.  

Now to understand this let us look into the adjacent diagram. Here the function 𝑠0
0 is shown. 𝑛 = 0 

means there is no radial nodal surface and 𝑙 = 2 means there are two longitudinal lines of nodes. 

These are the two longitudinal line nodes. The period of this is 53.9 minutes which means that in 

spheroidal oscillation it takes around one hour for the oscillation to complete. 

Now this is the symmetry axis. The symmetry axis means that it is perpendicular to the both 

longitudinal nodal lines. The radial part of the spheroidal oscillation are indicated by these arrows 

which indicate outward and inward motions whereas the tangential part can be obtained by such 

displacements. Now we have the spherical harmonic functions with respect to the reference frame.  

These spherical harmonics describe the latitudinal and longitudinal variations of the surfaces from 

the sphere. The general spheroidal oscillation function is denoted by 𝑆 indexed by 𝑛, 𝑙 and 𝑚. The 

second example of a spheroidal oscillation is S030. It indicates three latitudinal nodal lines. Now 

in practice, rotationally symmetric oscillations are considered as 𝑚 = 0 is associated with these 

harmonics. 𝑚 = 0 is mentioned like this.  

Oscillation of the order 𝑙 = 1 does not exist. 𝑙 = 1 would mean that a single equatorial nodal plane. 

If the nodal plane is at the single equatorial point, then any vibration would mean the displacement 

of the center of gravity. Since the center of gravity of such spherical bodies, which are planetary 

systems, they cannot be displaced, thus oscillations of the order 𝑙 = 1 are prohibited. Radial 

oscillations is a special type of spheroidal oscillation with 𝑙 = 0. 

 This indicates the absence of any tangential modes and thus retaining only the radial part, the 

spheridal oscillation reduced to purely radial oscillations. Now let us discuss the toroidal 

oscillations in more detail. The toroidal oscillations are purely tangential displacements. The 

spherical shape and volume of the earth are unaffected by a toroidal oscillation because the 

tangential displacements are restricted to the surface or any spherical surface at any radius of the 

earth. There is no deformation in and out of the surface. 
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 Thus, the spherical shape and the volume remains fixed. The amplitude of the longitudinal 

displacement varies with latitude. To understand this, let us have a look at the following diagram. 

These are the two modes of toroidal oscillation.On the left hand side is the most fundamental mode 

of toroidal oscillation.  

Here, 𝑛 = 0, which indicates the first vessel function's dependence on the radius. 𝑙 = 1 means one 

latitudinal nodal plane is indicated by this, and 𝑚 = 0 means there are no longitudinal nodal 

planes. Thus, this shearing motion, having opposite signs in the northern and southern 

hemispheres, remains invariant with longitude. The higher overtone of the toroidal oscillation is 

given here. Here, 𝑛 = 0, 𝑙 = 2, and 𝑚 = 0. 𝑙 = 2 indicates there are two nodal planes. The 

amplitude of the longitudinal displacement depends on the latitude, which means that as we move 

across latitudes, the displacement changes. This is how the amplitude of the longitudinal 

displacement varies along the latitude. These are the longitudes and latitudes for reference. The 

latitude with zero longitudinal displacement is the nodal plane. 

Here, across the nodal plane, the sign of the longitudinal displacement changes. The toroidal 

function is described by 𝑇. The amplitude of toroidal oscillations inside the Earth can vary with 

depth, depending on functions of the radius given by the Bessel function. We have looked into 

various Bessel functions and seen that the number of nodes is the number of overtones, which is 

𝑛. Now, we have an interesting comparison of the body waves or the three oscillations with surface 

waves, which we discussed in the previous lecture. Let us consider the Rayleigh wave. As we 

know, in a Rayleigh wave, the particles describe elliptical motion.  

Similarly, in spheroidal modes, it is the particles which undergo both radial and tangential motion. 

In particular, we can note that the particle motions in Rayleigh wave are fixed in the vertical plane. 

They are radial and tangential components to this. These are the two components of the Rayleigh 

wave. Similarly, for three-dimensional waves, this parallel oscillations, we have both the radial 

and tangential components.  

These are the radial component and the tangential components are on the surface. The spheridal 

oscillations are equivalent to standing wave patterns that arise from the interface and interaction 

of long period relay waves. which travel in opposite directions of the earth. Next, we consider the 

love wave. Recall that in the case of love wave, the particle motions are polarized in the transverse 

horizontal direction.  

Similarly, the tangential displacements for the toroidal oscillations may be regarded as equivalent 

to the standing wave pattern that occur due to the interference of oppositely traveling love waves. 

Now, have a look at this diagram. The tangential displacements are indicated by the red and blue 

color. These are tangential displacements similar to the tangential displacement of the love wave. 

Thus, we can conclude that free oscillations of the earth which are natural vibrational modes are 

important aspects and tools which can be accounted for the vibrations which are generated in 

earthquakes.  

Now, we come to the conclusion. First, we can note that the free oscillations of the Earth are natural 

vibrational modes or natural frequencies of the Earth. These occur after any major seismic event, 

such as an earthquake. These seismic events occur without any continuous external forcing and 

are impactful events that set the Earth ringing. Also, the various categories of free oscillations, 
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such as radial, spheroidal, and tangential oscillations, help us fundamentally understand and 

simplify the complex vibrations of the Earth.  

The oscillations typically have frequencies between 0.3 mHz and 10 mHz. These free oscillations 

complement the surface waves and refine the models of Earth's interior, helping us understand the 

various material properties and layers within the Earth's interior. One can refer to these references 

for a more detailed understanding of free oscillations and their fundamental physics. Thank you. 


