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Hello everyone, welcome to the SWAYAM NPTEL course on mathematical geophysics. We 

continue with module number 5, Diffusive Processes in Geophysics. This is lecture number 5, 

Decay of Magnetic Field. In this lecture, the following concepts are covered. The decay of the 

magnetic field in general, with various other aspects related to the study of this decaying process. 

Now, the decay of the magnetic field is based on the diffusion equation, which we have studied in 

previous lectures. Thus, first we will get introduced to spherical harmonics, which are used for 

magnetic fields, then the diffusivity limit, diffusion time scale, and applications in geophysics. So, 

let us begin. First, let us look at the concept of spherical harmonics. Now, spherical harmonics are 

functions of two coordinates, that is, θ and φ, in the spherical coordinate system. Recall that we 

have studied the spherical coordinate system, in which we have three coordinates. One is r, next is 

θ, and φ. r is the radial coordinate, where θ is the meridional angle and φ is the azimuthal angle. 

Now, the spherical harmonics are functions of the meridional angle or azimuthal angle. 

In the geophysical parlance, we have θ equivalent to latitude while φ equivalent to longitude. So 

on the surface of the earth where we describe each location in terms of latitude and longitude, we 

describe the spherical harmonics as a function of these latitude and longitudes on any spherical 

surface. Now this spherical surface can be the surface of earth it can be at any height let's say 100 

kilometers above the surface of the earth or it may be at a depth let's say 1000 kilometers below 

the depth of the earth still it is a spherical surface with a particular value of r thus A spherical 

surface in spherical coordinate system is denoted by r equals to constant. Thus, we have the 

spherical harmonics denoted by Yₗᵐ as a function of θ and φ. 

Now, this is useful to obtain the solutions of Laplace equation in spherical coordinates. This obey 

very nice formulas and relations in spherical coordinates. Now this is the definition of the spherical 

harmonic Yₗᵐ(θ, φ). First we have (-1)ᵐ followed by square root of (2l + 1) multiplied by (l - m)! 

divided by 4π (l + m)!. 

This is then multiplied by Pₗᵐ(cos θ). Then we have e^(i m φ). Now these are the four parts of a 

spherical harmonic. Here l is called the degree and m is called the order. Thus, L and M are the 

degree and order of the spherical harmonic. 

The first part keeps track of the sign. The second part is a normalization factor such that the 

magnitude value of the spherical harmonic over the entire surface equals 1. The third part is the 

Legendre polynomial. Specifically, in geophysics and geomagnetism, the associated Legendre 

polynomial is used. 
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Thus, Pₗᵐ is the associated Legendre polynomial. It is a function of θ in the form of cosine of θ. 

The fourth part is e^(i m φ), which is a Fourier function. So, e^(i m φ) in Euler notation can be 

written as cos(m φ) + i sin(m φ). Now we have the Legendre polynomial to cover the latitudinal 

dependence and the Fourier or sinusoidal functions to represent the azimuthal dependence. 

This is because the azimuthal angle is a periodic function. It goes from 0 to π and then again from 

0 to π because it represents the circular features of the sphere. The meridional angle θ moves from 

0 to π. It has limits from 0 to π, which is a finite domain. Thus, the Legendre polynomials, which 

are defined over finite domains, are used. 

Since φ is periodic, we have the periodic functions sine and cosine for its representation. Now, the 

peculiarity of spherical harmonics' order and degree is such that the order can only attain values 

from -L to +L. For example, if L = 5, then the permissible values for M, that is the order, are -5, -

4, and so on till +4 and +5. Thus, the total number of harmonics for a particular value of L equals 

2L + 1. Now, we will look into the various characteristics of these spherical harmonics. 

So, have a look at the adjacent diagram. Here, for degree and order equal to zero, we have Y₀₀. 

This is a function that attains a constant value over the entire spherical surface. Next, we have Y₁₀, 

where the degree equals 1 and the order equals 0. Here, we can see that there is a latitudinal 

variance. There is variation along the latitudes, while there is no variation along the longitudes. In 

contrast, we have Y₁₁. Here, you can see that there is no latitudinal variation but only longitudinal 

variation, as indicated by the red line. 

The colors vary from left to right and not from top to bottom. Next, we have higher harmonics 

such as Y₂₀. It has only latitudinal variations. Then we have Y₂₂, which has only longitudinal 

variations. Next, we have Y₂₁, the harmonic at the center. 

This harmonic has variations both in longitude and latitude. You can see that from top to bottom, 

it changes color from blue to red, and from left to right, it also changes color from blue to red or 

vice versa. Thus, these are the overall aspects of the fundamental characteristics of spherical 

harmonics. Higher harmonics will display more complicated features. Now, it is important to 

understand the symmetry of spherical harmonics. 

For example, if the difference in L and M—that is, degree minus order—equals an odd number, 

such as L - M = 1 for the case L = 3 and M = 2, it gives us an equatorially anti-symmetric structure, 

which means that above the equator and below the equator, the sign of this function is different. 

This is the equator, and above it, we have positive values for this function Y₃₂, whereas below it is 

negative. On the other hand, if L - M is even or zero, then we will have a symmetric equatorial 

structure. This means above and below the equator, there is the same sign. This entire zone is 

positive, which means above and below the equator, the sign of the function is the same. 

Thus, it is the symmetry. So, these are the details of spherical harmonics, which are used for the 

solution of geomagnetic decay. Now, we have looked into the diffusivity limit in the previous 

slide. We will revise it quickly. Thus, in the diffusivity limit, where η tends to infinity or velocity 

tends to zero, we have the non-advective induction equation given by: 

∂𝐁

∂𝑡
= 𝜂∇2𝐁 
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Now, we will assume that B = B(θ, φ, t) at a particular radial location R in the spherical coordinate 

system. 

For example, if this is the sketch of the cut section of the Earth's interior, at any depth r, let's say 

R_A, we can write this form for B. So, B, that is the magnetic field magnitude, depends only on 

latitude, longitude, and time. We assume the form as: 

𝐁 = 𝐁0(𝜃, 𝜙)𝑒
𝛼𝑡 

Now, we can assume the form of: 

𝐁 = 𝐁0(𝜃, 𝜙)𝑒
−𝛼𝑡 

The time dependence is chosen as an exponential form. Now, if we substitute this form of the 

solution (equation 2) into the governing diffusion equation (equation 1), we get: 

The left-hand side ∂B/∂t gives us: 

−𝛼𝐁0(𝜃, 𝜙)𝑒
−𝛼𝑡 

The right-hand side gives: 

𝜂∇2𝐁0(𝜃, 𝜙)𝑒
−𝛼𝑡 

Now, we can get rid of e^(-αt) from both sides, leaving us with equation (3): 

−𝛼𝐁0(𝜃, 𝜙) = 𝜂∇2𝐁0(𝜃, 𝜙) 

Now, since we know that the spherical harmonics are the most appropriate functions on the 

spherical surface, we expand the spatial dependency of B₀(θ, φ) in terms of spherical harmonics. 

Now, this indicates that the B₀ can be represented as a linear superposition of various spherical 

harmonics and their combinations. 

We have Aₗₘ as the coefficient for these spherical harmonics. With suitable combination, any 

function on the surface of sphere can be obtained. And thus we can study the evolution of the 

magnetic induction or the diffusion equation for such functions of the magnetic field. For example, 

if we limit the functional dependence to L = 1 and M = 0, we only have: 

𝐁0(𝜃, 𝜙) = 𝑌10 

considering A₁₀ = 1. 

Thus, we will proceed for the solution of the magnetic diffusion equation for the two-dimensional 

case of: 

𝐁0(𝜃, 𝜙) = 𝑌10 

In equation (3), we will substitute B₀ as Y₁₀ to get equation (4): 

−𝛼𝑌10 = 𝜂∇2𝑌10 

Now we have an identity for the spherical harmonics that is: 

𝑅2∇2𝑌𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚 
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That means for l = 1 and m = 0, we can have: 

𝑅2∇2𝑌10 = −2𝑌10 

Here l = 1. Thus this factor becomes -2. Thus the above equation becomes: 

−𝛼𝑌10 = −
𝜂

𝑅2
(2𝑌10) 

This is coming from equation number (4). Solving for α, we have: 

𝛼 =
2𝜂

𝑅2
 

Now, R can attain any value in the Earth's deep interior, such as this, which lies in the outer core 

of the Earth. Thus, R is any radius from the CMB, that is, the core-mantle boundary, to the center. 

Now, we have to substitute the value of α into the expression for B to get the general solution. 

Now, we can get, upon substitution of the value of α, the general solution of the magnetic field as: 

𝐁 = 𝐁0(𝜃, 𝜙)𝑒
−𝑡(

2𝜂
𝑅2

)
 

which can also be written as: 

𝑌10𝑒
−
2𝜂
𝑅2

𝑡
 

Now, this gives us the idea that at what rate the magnetic field is going to decay once we have no 

induction effect. As we know, the coefficient of time dictates the rate of decay of any spatial 

quantity. For Y₁₀, this is 2η/R². Now, for the Earth's core conditions, these values can be 

determined. This leads to the concept of the diffusion time scale. 

Now, the diffusion time scale is the scale of time where the diffusion process reduces an initial 

magnitude to a 1/e factor. We have: 

𝜂 =
1

𝜎𝜇
 

which is a material property for the Earth's outer core. The fluid is liquid iron. We have: 

𝜇 = 4𝜋 × 10−7 H/m 

and: 

𝜎 ≈ 1 × 106 S/m 

This gives us a resultant value of the magnetic diffusivity: 

𝜂 ≈ 0.8 m2/s 

Now, this is the magnetic diffusivity, which is estimated for the Earth's outer core. Now, note that 

there is no evidence of direct measurement of this magnetic diffusivity, as the Earth's outer core is 

inaccessible to direct methods. This is based on various experiments and mineral physical 
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calculations to obtain this value of η. The radius is considered as 10⁶ meters, which is 1000 

kilometers. This is from the center of the Earth. 

Taking this 1000 kilometers as a length reference, we can obtain the magnetic diffusion time as: 

𝜏 =
𝑅2

𝜂
 

which is substituted as: 

𝜏 =
(106)2

0.8
≈ 40,000 years 

What does this mean? It means that if the Earth's magnetic field were to be a pure dipole (Y₁₀) and 

the induction effect shuts down—let's say U tends to 0—then what would be the time before this 

decays to a factor of 1/e? That is 40,000 years. In 40,000 years, an initial magnetic field of a given 

strength will reduce to a factor of 1/e, which is approximately 2.7 times smaller. 

This refers to the gradual reduction in the strength or intensity of the magnetic field over time. 

This phenomenon can occur in various other contexts, such as astrophysical and stellar interiors. 

Also, in various materials where the magnetic field is involved. Thus, we have the diffusion time 

scale for Y₁₀. Note that if the harmonic changes to Y₃₂, then the time scale will change because this 

factor will change. 

Once this factor changes, It changes this coefficient too, and thus we have a different time scale. 

So this will be changed. So for higher harmonics, the magnetic diffusion time scale is smaller. This 

means that more complicated functions of the spherical surface will decay faster for the magnetic 

field. 

Now, various applications of the diffusivity limit and the magnetic field decay exist in geophysics. 

We have specifically looked into the Earth's liquid outer core, where the magnetic diffusion time 

competes with the convective processes to sustain the geomagnetic field. The magnetic field of the 

Earth continuously decays with various time scales for various harmonics inside the Earth's outer 

core. However, the convective processes, which give rise to finite velocity u, regenerate the 

magnetic field and maintain the geomagnetic field through the process called geodynamo. If the 

diffusion time is high, this indicates that the induction process dominates over the diffusion process 

because a high diffusion time indicates slow diffusion or a weaker effect. 

Also, diffusion contributes to the long-term evolution of the geomagnetic field. This has 

consequences for secular variations and magnetic reversals, which are flips in the polarity of the 

Earth's magnetic field. Apart from the Earth's liquid outer core, magnetotelluric surveys are 

another important geophysical application where the decay of the magnetic field is of paramount 

importance. It uses natural variations in electromagnetic fields to probe conductivity at various 

depths. In this process, the magnetic diffusion length scale determines the depth of penetration for 

specific frequencies. 

The length and time scales of magnetic diffusion are very important for magnetotelluric surveys. 

Overall, the magnetic diffusion time models the evolution of signals and the interpretation of 

various other applications, such as oceanic circulation patterns. We can conclude that the decay of 

magnetic fields in conductive materials is primarily driven by resistive dissipation. This is 
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described as magnetic diffusion. The magnetic decay time scale is proportional to the square of 

the system size, that is L, and inversely proportional to the electrical conductivity. 

Thus, the diffusion time scale can be given as: 

𝜏 =
𝐿2

𝜎𝜇
 

Overall, the understanding of various decay processes of magnetic fields of different structures 

and different length scales determines the evolution of geophysical and geomagnetic processes. 

This is also important for modeling astrophysical magnetic fields, where the decay of the magnetic 

fields and various length scales are in operation. The history of the magnetic field evolution, 

modeling of co-dynamics, and the exploration of the interaction between electromagnetic and 

thermal processes are important applications of these magnetic field decay concepts. Thus, we 

conclude the present lecture in module number 5. 

We have the following references for more details on magnetic diffusion and the decay of magnetic 

fields, as well as their applications to geomagnetism and geophysics in general. Thank you. 

 

 

 


