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Hello everyone. Welcome to the Swayam NPTEL course on Mathematical Geophysics. Today, 

we will continue with Module 4: Mathematical Modelling, Part 2. This is the third lecture: Electric 

Fields. In this lecture, the concepts covered pertain to electric fields. 

 

The five components of this lecture are as follows. First, we will look at the basic Coulomb's Law. 

Second, we will discuss the electric field for a discrete charge distribution. Third, the electric field 

for a continuous charge distribution. Next, we will discuss the divergence of the electric field and 

the curl of the electric field. 

Now, these concepts have their corresponding applications in geophysics, which we will also 

discuss. So, let us begin. Coulomb's Law Coulomb's Law describes the electric field due to a point 

source charge, 𝑄. The test charge, 𝑄, and the point source charge, 𝑞, are placed such that the 

distance between them is 𝑟. Here, 𝑞 and 𝑄 are the two point charges shown in red and blue. Our 

aim is to determine the force on the test charge 𝑄 due to the single source charge 𝑞 at rest and at a 

distance 𝑟 away. 

 

The force is found to be proportional to the product of the two charges and is also found to be 

inversely proportional to the square of the separation distance, which means that Force is 

proportional to 𝑄 and 𝑄 and inversely proportional to the separation distance. This is 

mathematically shown here. Now, this is based on the experiments conducted by Charles 

Augustine de Coulomb in the 1780s. The force is given by 𝐅 vector which is the force field. 

equals 
1

4𝜋𝜖0

𝑄𝑞

𝑟2 �̂�. This is a constant quantity where 𝜖0 is the electrical permittivity of free space. Its 

value is 8.85 × 10−12 C²/N·m². Its value is 8.85 × 10−12 Coulomb² Newton⁻¹ meter⁻². This is in 

SI units. 

Now here we have the product of the two charges. This is the separation between the charges. This 

is the unit vector pointing along the separation distance. Having understood the Coulomb's law, 

now we move on to the electric field that is formed by a discrete charge distribution. By discrete 

charge distribution, we mean that the charges are point sources which are located at distinct 

locations without any connection between them. 

 

The several point charges are denoted by 𝑄1, 𝑄2 up to 𝑄𝑛. These are at corresponding distances 

𝑅1, 𝑅2, etc. from the field point 𝑃. Now, this is clarified in this diagram. We have the Cartesian 

coordinate system with origin at 𝑂 and the 𝑋𝑌𝑍 axes. 
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The field point 𝑃 is the point where the electric field is to be estimated. The red dots are discrete 

charges. One among them is 𝑞𝑖, that is the source charge highlighted here. In general, these charges 

are denoted by 𝑞𝑖. Now, for the general charge 𝑞𝑖, the distances are subscript 𝑖. With this in mind, 

we can look into the total force as 𝐅 = 𝐅1 + 𝐅2 + ⋯. 

These are the individual electric fields or electric force fields, which are produced by the individual 

point source charges on the field point 𝑄. We have used 𝑃 and 𝑄 interchangeably here. The 𝐅 

vector now corresponds to the sum of the individual source fields. Having taken the component, 

which is constant outside, as a common factor, we have the rest of the expression given by 𝑄1
𝑄

𝑅1
2, 

which is R₁ + 𝑄2
𝑄

𝑅2
2, etc. 

 

This simplifies to 𝐅 =
𝑄

4𝜋𝜖0
(

𝑄1

𝑅1
2 �̂�1 +

𝑄2

𝑅2
2 �̂�2 + ⋯ ). Now, having performed the vector addition, we 

get the resultant direction of the electric field 𝐄. Thus, the force is given as 𝑄 multiplied by the 

electric field, that is, 𝐅 = 𝑄𝐄. Thus, 𝐄 can be summarized as 
1

4𝜋𝜖0
∑

𝑞𝑖

𝑅𝑖
2

𝑛
𝑖=1 �̂�𝑖. Upon performing the 

vector addition, we will get the resultant direction of the electric field 𝐄 vector. 

 

Now, the 𝐄 vector, as can be seen from this expression, is the electric field due to the source 

charges. It depends only on the source charges. It does not depend on the test charge 𝑄. Thus, the 

electric field is proportional to the source charge distribution and inversely proportional to the 

square of the separation distances between the source charge and the test charge. Now, we will 

have a look at some special cases of the electric field distribution for discrete charges. For 

simplification, let us consider that the total number of point charges is limited to two. 

Now, these two charges are placed at a certain distance between them. They form a charge couple. 

Note that the charges are of the same sign. Both are positive charges. The field lines are shown 

here. 

 

Recall that we have looked into the field line concept in the geometric representation lecture, and 

we have seen that the field lines interact with each other and get distorted from the original 

individual and independent field lines, which can be caused by the individual point charges. This 

results in distortion such that the effective field lines become as shown here. Now suppose the 

charges are of opposite sign. We can see the dramatic change in the geometric representation of 

the field lines. This is a dipole configuration where we can see the field lines emanating from the 

positive charge. 

 

and converging on the negative charge. Whereas in the case of the coupled charges, the field lines 

tend to move away from the opposite charge field lines. We can also analyze various other forms, 

such as the curl and divergence of the field lines, as we will look into later in this lecture. Next, 

we have the electric field of a continuous charge distribution. A continuous charge distribution 

means that we have charge at every point in space. 
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So, to denote such a charge distribution, we need some concept of continuous charges. Thus, we 

have the assumption that charge is distributed continuously over some region. Now, we look into 

the electric field, which is obtained for such continuously distributed charges. With the help of 

these diagrams, it would be very simple to understand this. The gray-shaded area is a continuous 

distribution of the charges, where an elementary charge is shown as 𝑑𝑞. 

 

Now, this continuous distribution is at a distance 𝐫 from the test point 𝑃. Our aim is to find the 

electric field generated due to the continuous distribution. As we have seen earlier, this electric 

field does not depend on the test point 𝑃. It only depends on the charge distribution and the 

separation between the charges and the test point, that is 𝑅. Along the same lines as a point source 

charge distribution, we can obtain the electric field for a continuous distribution of charges. Now, 

that is given by 
1

4𝜋𝜖0
∫

𝑑𝑞

𝑅2 �̂�. Now, we can understand this from a simple analogy. 

 

Have a look at this expression. We have the common factor 
1

4𝜋𝜖0
, followed by a summation. Now, 

this summation occurs because the charges are discrete points. For a continuous charge 

distribution, the summation sign is replaced by the integral sign. This is because now the charges 

have essentially become a conglomeration of elemental and infinitesimal charges 𝑑𝑞. 

 

Thus, the integral of 
𝑑𝑞

𝑅2 is essentially a representation of a discrete source charge distribution, as 

shown here. We can go further to examine some simplified and special cases. First, a line charge 

distribution. A line charge distribution can be depicted in diagrammatic form as follows: here we 

have a line where an elemental part is shown by 𝑑𝑙. Now, the continuous charge distribution can 

be represented in the form of the line charge density. 

 

The line charge density is nothing but the charge per unit length which is 𝜆. It means for a unit 

length the total charge along this line is 𝜆. Then the elementary charge distribution in 𝑑𝑙 becomes 

𝑑𝑞 = 𝜆𝑑𝑙. Thus at the test point 𝑃 which is located at a distance 𝑟 away the total electric field due 

to this line charge distribution is 
1

4𝜋𝜖0
∫

𝜆𝑑𝑙

𝑟2 �̂�. All we have done is replacing 𝑑𝑞 by 𝜆𝑑𝑙. 

 

Next, we move on to the distribution that is a surface charge distribution. The surface charge 

distribution is depicted as this diagram. Here we have a surface where an elemental surface is 

shown as 𝑑𝑠. Now the density of this surface charge distribution is given by the charge per unit 

area that is equals to 𝜎. 

 

Thus, the elementary charge distribution in the 𝑑𝑠 elemental area now becomes 𝜎𝑑𝑠. Replacing 

𝑑𝑞 by 𝜎𝑑𝑠 in this expression, we get the electric field due to a surface charge distribution at a test 

point 𝑃, which is located at a distance 𝑅 from the source charge distribution. Finally, we will look 

into the most general form of a volume charge distribution. The volume charge distribution is 

depicted here. 
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Here we have the volume 𝑉 in which an elemental volume is 𝑑𝑉. Now the charge density is given 

by the charge per unit volume, that is 𝜌. Thus, the elementary charge distribution becomes 𝜌𝑑𝑉. 

Now the elementary charge distribution in 𝑑𝑉 becomes 𝜌𝑑𝑉. The electric field of the entire volume 

charge distribution can be obtained by simply replacing 𝑑𝑞 by 𝜌𝑑𝑉 in this expression. 

Thus, we obtain the electric field for a volume charge distribution as 
1

4𝜋𝜖0
∫

𝜌𝑑𝑉

𝑟2 �̂�. Thus, we now 

understand how to obtain the electric field for any charge distribution, whether it be continuous or 

discrete. We can also use both expressions for obtaining the electric field for a mixed charge 

distribution, which contains point sources as well as continuous charge distribution, by just the 

summation of this expression and this expression. 

 

Now we look at the divergence of the electric field. To understand the concept of divergence of 

the electric field, we look into the flux of an electric field. As we had discussed in earlier lectures, 

the flux actually means the extent or magnitude of the field lines crossing through a particular area. 

Here we have the total area denoted by 𝑆 and an infinitesimal area 𝑑𝐒. The 𝑑𝐒 vector is normal to 

the surface 𝑆 and is shown here. 

The electric field is 𝐄. We can see the crossing of these field lines through this surface. Now the 

flux is given as ∫ 𝐄 ⋅ 𝑑𝐒. This is the flux of the electric field. Now this flux of this electric field is 

equals to the 
𝑄enclosed

𝜖0
. 

 

Here 𝑄enclosed denotes the total charge distribution which is enclosed within the surface. This can 

be obtained using the Gauss law. This also represents the integral form of the Gauss law or the 

divergence law for the electric field. We can also understand this from the differential form of the 

Gauss law. Applying the divergence theorem on the left hand side of the above equation we obtain 

∫ (∇ ⋅ 𝐄)𝑑𝑉 = ∫ 𝐄 ⋅ 𝑑𝐒 = ∫
𝜌

𝜖0
𝑑𝑉, where 𝜌 is the volume charge density and 𝑑𝑉 is the volume 

element. So 𝜌𝑑𝑉 provides the 𝑄enclosed. Upon equating the integrals We obtain  

∇ ⋅ 𝐄 =
𝜌

𝜖0
. This is the differential form of Gauss law. 

 

Next, we consider the curl of the electric field. The curl of the electric field can be obtained as 

follows. We will be using the line integral of the electric field from point 𝐴 to point 𝐵. This is in 

the same vein as obtaining the curl of the gravitational field, which we have seen in the previous 

module. Have a look at this picture, where we have a loop starting from 𝐴 and ending at 𝐵. Here, 

the Cartesian coordinate system is used, with 𝑄 located at the origin. 

 

Now, the distance between this charge 𝑄 and any point on this loop is given by 𝑅𝐴 to 𝑅𝐵. This is 

the variable 𝑅, which gives the distance between the charge 𝑄 and a general point along this loop. 

Thus, the circulation The integral ∮ 𝐄 ⋅ 𝑑𝐥 along this loop is given by 
1

4𝜋𝜖0
∫

𝑞

𝑟2 𝑑𝑟, integrated from 

𝐴 to 𝐵. This simplifies to 
1

4𝜋𝜖0
(

𝑞

𝑅𝐴
−

𝑞

𝑅𝐵
). To obtain the circulation around a closed path implies 𝐴 

and 𝐵 becoming coincident. This completes the loop but also means that 𝐴 and 𝐵 are equal. 
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Hence, 𝑅𝐴 becomes equal to 𝑅𝐵. Now, we have the right-hand side of this equation going to zero. 

Thus, the integral from 𝐴 to 𝐵 of 𝐄 ⋅ 𝑑𝐥 = 0. This means that the circulation of the electric field 

around any closed loop equals zero. Applying Stokes' theorem, we can conclude that the curl of 

the electric field equals zero. 

 

This is because the integral ∮ 𝐄 ⋅ 𝑑𝐥 = ∫ (∇ × 𝐄) ⋅ 𝑑𝐒. This integral must be obtained over the 

entire surface enclosed by this loop. By the property of curl-free fields, we can conclude that the 

electric field is a conservative field. Thus, we can conclude that The electric field can be used for 

various geophysical applications as it is a conservative field. 

 

In particular, it can be stated that certain geophysical applications make use of electric fields. For 

example, the resistivity survey. The resistivity survey is a geophysical application for 

understanding the subsurface resistivity distribution. This is obtained by injecting electrical current 

into the ground through electrodes, which are nothing but points where the electric current is 

measured. The resulting voltage helps to determine the underground electric field distribution. 

 

The distortions in the electric field distribution help map groundwater aquifers, locate mineral 

deposits, and assess soil contamination. This is possible because all these factors affect the electric 

field. Also, in induced polarization, which is another geophysical technique, the delayed response 

or polarization of subsurface materials to an electric field is used. The subsurface material distorts 

the response of the electric field. This is then utilized to detect possible anomalies that can be 

substituted for possible minerals. 

 

This helps in extracting minerals, especially in clay-rich zones. One can look into the following 

references for more details. We will look into further applications in the next lectures. Thank you. 


