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Hello everyone, welcome to the SWAYAM NPTEL course on mathematical geophysics. We 

continue with module number 3, mathematical modeling part 1. This is the third lecture, 

gravitational field continued. In this lecture, the concepts covered are related to the gravitational 

field and the concepts we discussed in the previous lecture. Here, the components of this lecture 

are the gravitational field of an elementary mass, a spherical shell, and inside and outside the 

spherical shell. 

So, this forms the total content of the present lecture. So, let us begin. First, we will have a look 

at the fundamental concept of the gravitational field of an elementary mass. In previous lectures, 

we have seen Newton's laws of gravity and Newton's laws of attraction, which were used for 

determining the gravitational force between two points. Here, we are looking at elementary 

masses. 

The gravitational field for a point mass located at Q at the point P is given by: 

𝐆𝑃 = −𝐺
𝑀1

𝐿𝑄𝑃
2

𝐋𝑄𝑃
𝐿𝑄𝑃

 

This is directed along the line joining Q and P locations. Note that Q and P are position vectors. 

So in XYZ plane, which is shown here, let us consider a point Q as the origin (0, 0). This is the 

origin of the Cartesian coordinate system which has been used in this diagram. Thus: 

𝐋𝑄𝑃 = 𝐋𝑂𝑃 = 𝑥𝑖̂ + 𝑧�̂� 

The length 𝐿𝑂𝑃 can also be given by: 

𝐿𝑂𝑃 = √𝑥2 + 𝑧2 

This is nothing but √𝐴𝐵2 + 𝑂𝐴2. This is also equal to √𝑥2 + ℎ2, where ℎ is the gap between the 

two plates. Thus, the gravitational field can be simplified as: 

𝐆𝑃 = −𝐺
𝑀

𝑥2 + ℎ2
𝑥𝑖̂ + 𝑧�̂�

√𝑥2 + ℎ2
 

Note that this gravitational field is a function of 𝑥 and 𝑧 spatial coordinates. This makes it a two-

dimensional field. The variation of this gravity field along the spatial coordinates are: 

𝑥𝑖̂

(𝑥2 + ℎ2)3/2
+

𝑧�̂�

(𝑥2 + ℎ2)3/2
 

These are the dependencies of this gravitational field, which is depending on 𝑥 and 𝑧 

coordinates. This is clearly shown in the following expressions. 

The 𝑔𝑥 is the x-directional component of the gravitational field, which is: 

𝑔𝑥 = −𝐺
𝑀𝑥

(𝑥2 + ℎ2)3/2
 



Similarly, the axial gravitational field component 𝑔𝑧 equals: 

𝑔𝑧 = −𝐺
𝑀ℎ

(𝑥2 + ℎ2)3/2
 

Next, having understood the gravitational field of an elementary mass, we apply it to get the 

gravitational field caused by a thin spherical shell. This thin spherical shell has a density 𝜎. The 

thin spherical shell is shown as a grey-shaded area. The inner shell, shown by the deep greyish 

colour, is hollow. 

The density 𝜎 is an area density, which means it is the density over which mass per unit area is 

distributed. Now, the field inside the shell at any point P, which is caused by two elementary 

masses, is discussed below. Now, have a look at this diagram, which makes things clearer. 𝑑𝑆1 

and 𝑑𝑆2 are the elementary areas on this outer shell. Now, if we multiply the density by this 

elementary area, we will get the elementary mass. 

The elementary masses are given by 𝜎𝑑𝑆1 and 𝜎𝑑𝑆2, respectively. These masses are located at 

positions 𝑄1 and 𝑄2. We are considering the gravitational field at point P. This point P is located 

inside this thin spherical shell, and this point P lies on the line joining 𝑄1 and 𝑄2. Now, if 𝑄1 and 

𝑄2 are two points on the circumference of this spherical body, then P, which lies at the midpoint 

of 𝑄1 and 𝑄2, is equidistant from both 𝑄1 and 𝑄2. 

This means that 𝐋𝑃𝑄1 is equal and opposite in direction to 𝐋𝑃𝑄2. Following the previous slide, we 

can get the elementary gravitational field caused by these elementary masses as: 

𝑑𝐠1 = −𝐺
𝜎𝑑𝑆1

𝐿𝑃𝑄1
3 𝐋𝑃𝑄1 

Similarly: 

𝑑𝐠2 = −𝐺
𝜎𝑑𝑆2

𝐿𝑃𝑄2
3 𝐋𝑃𝑄2 

Now, since P lies at the midpoint of the 𝑄1𝑄2 line, it makes a right angle with the origin, which 

is the center of the sphere. The 𝑄1𝑄2 line is shown as a blue dotted-dashed line, and OP makes a 

right angle with this dashed-dotted line shown in blue color, since P is the midpoint of 𝑄1𝑄2. 

Thus, we have: 
𝑑𝑆1

𝐿𝑃𝑄1
3 =

𝑑𝑆2

𝐿𝑃𝑄1
3  

We can also write this in terms of 𝜔, which is the solid angle. So, 𝜔 is the solid angle subtended 

by 𝑑𝑆1 or 𝑑𝑆2 on P. Since 𝑑𝑆1 is an elementary surface area, it is more appropriate to call this an 

elementary solid angle. 

We recall that a solid angle is given by area divided by distance squared. Here, the area is the 

elementary area 𝑑𝑆1, and the distance between the points 𝑄1 and 𝑃 is 𝐿𝑃𝑄1
2 . Also: 

𝐿𝑃𝑄 = 𝑟cos𝛼 

where 𝛼 is shown here. It is the angle between the radial vector or the radial line shown in red 

and the blue line. So, the radial line 𝑅 has its component given by: 

𝑅cos𝛼 = 𝐿𝑃𝑄 



So we can make use of these relations to simplify and express the equality in terms of solid 

angle. Thus, we have the equation: 
𝑑𝑆1

𝐿𝑃𝑄1
3 =

𝑑𝑆2

𝐿𝑃𝑄2
3 =

𝑑𝜔

𝑟cos𝛼
 

This can be used to find the field in this diagram. Thus, the total field is obtained by taking an 

integral over the entire spherical shell. The gravitational field for a spherical shell of radius 𝑟 is 

obtained by integrating over the elementary fields, which is given by: 

𝐠𝑅 = ∫ 𝑑𝐠1 + ∫ 𝑑𝐠2 

Substituting the relations, we get: 

𝑑𝐠1 = −𝐺𝜎
𝑑𝑆1

𝐿𝑃𝑄1
3 𝐋𝑃𝑄1 

𝑑𝐠2 = −𝐺𝜎
𝑑𝑆2

𝐿𝑃𝑄2
3 𝐋𝑃𝑄2 

Now, using the relation with the solid angle expression, we can substitute this to obtain: 

𝐠𝑅 = −∫
𝑑𝜔

𝑟cos𝛼
(𝐋𝑃𝑄1 + 𝐋𝑃𝑄2) 

Since we have the relation that 𝐋𝑃𝑄1 = −𝐋𝑃𝑄2, we get the bracketed term equals 0. This renders 

the gravitational field: 

𝐠𝑅 = 0 

for a thin spherical shell with density 𝜎. 

So we come to the nice conclusion that the total field caused by two elementary masses is equal 

to zero. Now, what are these two elementary masses? These are the elementary masses located at 

𝑄1 and 𝑄2. Now, for any point such as P, the entire shell can be obtained as a combination of 

such pairs of points 𝑄1, 𝑄2. For example, these two points. 

These two points are equal and opposite to the point which is shown as the midpoint. So like this, 

we can understand that if we consider the spherical shell as a system of such pairs, we can 

conclude that the field inside a uniform spherical shell is zero for all the points. This occurs 

because any point, if you consider for example this, it will have two points which will make the 

gravitational field zero at this point. Thus, the gravitational field caused by a thin spherical shell 

inside it is zero. 

Next, we go to discuss the gravitational field which is caused by a thin spherical shell of density 

𝜎, and we consider the point P located outside this shell instead of inside it. Have a look at this 

diagram. This diagram shows a thin spherical shell with origin O, the radius 𝑅, and the P point is 

located outside this shell. The P point is at a distance of 𝐿 from a ring which is shown here. 

This is a ring which can be obtained from the spherical shell shown by dotted line. Now this ring 

has a radius 𝐴. Now this ring, its axis which is OP makes an angle 𝜓 with the radial vector which 

is 𝑅 joining the origin to the rim of this spherical shell ring. We are interested in calculating the 

field at point P which is given by the elementary field 𝑑𝐆. The elementary field 𝑑𝐆 is the first 

step towards calculation of the total gravitational field. Now this is: 

𝑑𝐆 = −𝐺
𝜎𝑅𝑑𝜓 𝑑𝑙

𝐿3
𝐋 



𝜎 is the density, whereas the elementary surface area is 𝑑𝑆, which is equal to 𝑅𝑑𝜓 𝑑𝑙. Capital 𝐿 

is the distance from the mass to the observation point. The elementary area is obtained by 

multiplying 𝑅𝑑𝜓 by an elementary length 𝑑𝑙. This is the area on this ring. The radial component 

of the gravitational field is given by taking the cosine of 𝛼 multiplied by 𝑑𝐺, which is the 

magnitude of the elementary gravitational field as obtained above. 

In this diagram, capital 𝑅 represents OP. And 𝑅cos𝜓 represents this region. Hence: 

cos𝛼 =
𝑅 − 𝑟cos𝜙

𝐿
 

This is simplified as 𝑑𝐺 multiplied by: 
𝑅 − 𝑟cos𝜙

𝐿
 

This is further simplified to: 

−𝐺𝜎
𝑑𝜓 𝑑𝑙

𝐿2
(𝑅 − 𝑟cos𝜙) 

Now, this statement gives the crux idea of deriving the gravitational field in total. All the 

elements of the ring are located at the same distance from the observation point, which means we 

can only consider the cos𝛼 component, and the vertical components cancel out if we consider the 

sum over the entire ring. Thus, we have the expression for the radial component due to the ring 

mass as: 

𝑑𝑔𝑟 = −𝐺𝜎𝑅𝑑𝜓
2𝜋𝑥

𝐿3
(𝑅 − 𝑅cos𝜓) 

where 𝑥 = 𝑅sin𝜙 and: 

𝐿 = √𝑟2 + 𝑅2 − 2𝑅𝑟cos𝜓 

Now, if we replace capital 𝐿 and 𝑥 = 𝑅sin𝜙 in the above expression and integrate, we can obtain 

the field caused by all the masses of the shell. This is because 𝜓 will cover the entire sphere in 

terms of small thin rings as it goes from 0 to 𝜋. 

This is 𝜓 = 90∘ and a ring like this is 𝜓 = 0. So from this point, if we consider 𝜓 moving from 

0 to 𝜋, we will consider all the rings which will cover the entire sphere. Thus, we are integrating 

from 0 to 𝜋: 

−𝐺𝜎2𝜋𝑟2∫ sin
𝜋

0

𝜓
𝑅 − 𝑟cos𝜓

𝐿3
 𝑑𝜓 

This integral is evaluated as follows: 

−𝐺𝜎2𝜋𝑟2(𝑅𝐼1 − 𝑟𝐼2) 
where: 

𝐼1 = ∫
sin𝜓

(𝐴 − 𝐵cos𝜓)3/2

𝜋

0

 𝑑𝜓 

𝐼2 = ∫
sin𝜓cos𝜓

(𝐴 − 𝐵cos𝜓)3/2

𝜋

0

 𝑑𝜓 

Now, if we consider: 

𝐴 = 𝑟2 + 𝑅2 

𝐵 = 2𝑅𝑟 



for simplification, we get: 

𝐼1 =
2

𝑅(𝑟2 − 𝑅2)
 

𝐼2 = −
2

𝑟𝑅2
+

2

𝑟(𝑅2 − 𝑟2)
 

Upon substitution into this expression, which we had earlier, we can obtain the gravitational field 

as: 

𝐠 = −𝐺
4𝜋𝜎𝑟2

𝑅2
�̂� 

This equals: 

𝐠 = −𝐺
𝑀

𝑅2
�̂� 

So, this is the gravitational field at a point P, which is located outside the spherical shell with 

density 𝜎. This equals: 

𝐠 = −𝐺
𝑀

𝑅2
�̂� 

In this lecture, we have discussed the gravitational field due to an elementary mass and a 

spherical shell. We conclude that an elementary mass provides a foundational understanding at a 

fundamental level of the gravitational interactions among various points and masses, and this is 

used in simple and large-scale problems. The spherical shell demonstrates a geometry that is 

very useful in the context of geophysical systems, and the gravitational field due to such 

spherical shells upon masses which are located inside and outside are very important for 

geophysical studies. It provides a very important symmetrical study for understanding hollow 

objects and layered Earth systems, as the Earth is made up of various layers. The spherical shell 

and the corresponding gravitational effects are very useful. One can refer to this reference for 

more details. Thank you. 

 

 

 


