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Hello everyone, welcome to the SWAYAM NPTEL course on mathematical geophysics. 

We will continue with module 2, fundamental theorems. This is the fifth lecture in this 

module, titled Green's function and theorem. In this lecture, the following concepts are 

covered. The overall idea of Green's function and related theorem. 

The lecture is divided into five components. First, the basic concept of Green's function, 

followed by Green's theorem. Then we will look at how to derive Gauss's theorem and 

Stokes's theorem from the generalized Green's theorem. Finally, we will look at various 

applications of Green's function and theorem in geophysical studies. So let us begin. 

What is the basic concept of Green's function? Physically, the Green's function 

encapsulates the response of a physical system to a unit source. It relates a point source to 

the field around it. It provides the fundamental behavior of a system as a response to a unit 

impulse. For example, if this is a point source, the field may diverge, converge, or circulate 

around this point. 

The behavior of the field With respect to a unit source is captured by the Green's function. 

Mathematically, the Green's function can be denoted as g(x, x'). The marking as a 

superscript of x is called prime, and it denotes the location of the source. The coordinate x 

is the position vector of any point. 

The Green's function g(x, x') is an impulsive response to any inhomogeneous linear 

differential operator L. When such a linear differential operator operates on the Green's 

function, it gives the impulse response of the linear differential operator in the form of a 

delta function. The delta function, commonly known as the Dirac delta function, is defined 

as follows. Delta(x - x') is equal to 1 when x equals x' and equals 0 when x is not equal to 

x'. In fact, when x is not equal to x', the delta function is undefined. 

In fact, the delta function as defined here denotes the unit impulse function. The Dirac delta 

function also has alternative definitions, such as the delta function going to infinity at the 



source location while being undefined at any other point. Essentially, the Dirac delta 

function is a proxy for an impulse source. The general application of Green's function. The 

Green's function is used to solve partial differential equations such as Poisson's equation, 

Laplace's equation, Helmholtz's equation, and other equations. 

These equations will be discussed in much more detail in the next module, which consists 

of the modeling of geophysical systems. But before that, we will discuss the Green's 

function as it is used in geophysical applications. For better understanding, we will take 

the help of this diagram. The delta function can be schematically represented as this left 

figure. It indicates an impulsive source located at x prime and denoted by delta x minus x 

prime. 

The Green's function is the response of the differential operator to this impulse function. 

Note that the Green's function is spreading over a wider region, whereas the source function 

is highly localized. Now we come to the Green's theorem. The Green's theorem is a 

generalized theorem relating double integrals to line integrals around a closed curve. We 

will shortly see that this is in line with Gauss's theorem and Stokes' theorem, and we will 

be able to derive Gauss's theorem and Stokes' theorem from the Green's theorem. 

We will consider the mathematical form of the Green's theorem as shown here. A 

continuously differentiable vector field given by F vector is equal to PQ in a region S can 

be utilized in the form as shown here on the left-hand side and right-hand side to form the 

Green's theorem. F vector is the field vector which has two components, P and Q. The left-

hand side denotes the line integral of the component P along X and the component Q along 

Y, respectively. The right-hand side is a surface integral. The surface integral is taken for 

the partial derivatives of the field components with respect to x and y for the Q and P 

components, respectively. 

The integral is then formed as the difference between these partial derivatives. This can be 

interpreted as the flux of the directional derivatives of the field components. The line 

integral P dx plus Q dy integrated along the closed loop is shown here. This is the surface 

integral. This equation represents Green's theorem. 

We can take the help of the following diagram for a better understanding of Green's 

theorem. We have the Cartesian coordinate system denoted by the x and y axes. The closed 

curve is denoted by C, whereas the interior is denoted by A, which is the area enclosed by 

the curve C. YL and YU denote the two paths from point 1 to point 2 going below and 



above the loop. Similarly, XL and XR are two parts of the loop with respect to the X axis. 

The elemental area is shaded as shown here. 

If the field F has a component P, it has to be integrated along the differential element dx, 

and Q has to be integrated along the differential y elements. These are differential x 

elements. These are the differential y elements. These elements are obtained as a projection 

from the dl, which is the elemental line, to the respective coordinate axis. Using the line 

integral, Green's function can be evaluated on the left-hand side as well as the right-hand 

side. 

On the right-hand side, Green's theorem has to be integrated over this entire area A for 

every differential area as shown here. Thus, Green's theorem indicates a relationship 

between line integrals and double integrals of a field with two components enclosed by the 

curve C. Now, let us have a look at the derivation of Gauss's theorem from Green's theorem. 

We have looked at Gauss's theorem earlier. It relates volume integrals to surface integrals 

or fluxes. 

Consider this surface S with an elemental surface area dS. The elemental area is dS. And 

it is pointing along the direction in the hat. Setting p equals minus f and q equals f, and dr 

denoted by dx i-cap plus dy j-cap, and the normal vector denoted by dy i-cap minus dx j-

cap, the above equations of Green's theorem result in pdx plus qdy equals f dot n dr, and 

the right-hand side results in the divergence of f dx dy. 

Going from the line integral and double integral of these equations, we will obtain Gauss's 

theorem. The left-hand side is the double integral of f dot n dr, which is nothing but the 

divergence of f dx dy dz, which is obtained from the second relation. This gives Gauss's 

theorem. Next, we consider the derivation of Stokes's theorem from Gauss's theorem. For 

Stokes's theorem, we set P equals Fx and Q equals Fy. 

This simplifies to the following relations. The left-hand side of Green's theorem, that is 

Pdx plus Qdy, becomes the dot product between the field f and the line element dr. This is 

the field vector f. It has a component p and a component q. Thus p dx and q dy is nothing 

but f dot dr. Thus, the first relation. In the second relation, del q by del x 

minus del P by del y dx is nothing but the flux of the curl of F. This can be obtained by 

simple algebraic calculations. The K component can be obtained as so this forms the curl 

of F. The kth component is denoted by k hat. The ds vector in Cartesian coordinates 

becomes dx dy. Now, using this, we have Green's theorem given by 



equality among these two relations. So, substituting the right-hand side into Green's 

theorem, we have the first relation and the second relation. This gives the Stokes theorem. 

Here, n dot ds is nothing but k cap dx dy, as this dx dy is the area of the plane while the z 

direction is the direction along n hat, which is perpendicular to the surface. Now, let us 

have a look at the application of Green's function and theorem in geophysical studies. 

First, in seismological studies, the Green's function is used to solve the seismic wave 

equation for a point source. If this is a schematic of the crust, mantle, and core denoting 

the layers of the Earth's interior, then an earthquake source can be located as a point where 

tectonic plates break or a shear occurs, leading to a massive release of energy which 

propagates as waves. So, this point is considered as a source, and the seismic waves which 

are propagating can be formulated in terms of Green's function. The Green's function, as 

shown here, is represented as G(R vector, T) and G(R prime vector, T). Here, R is the point 

of measurement. The point of measurement can be any seismic observatory or 

seismological station on the Earth's surface. 

R prime vector is the point source or the epicenter of the earthquake. So, this model of the 

earthquake-generated seismic waves is ideally represented using Green's function, and the 

waves are the solution of the equation using Green's function. Next, the geophysical studies 

involving gravity and magnetic studies for geophysical exploration. In gravity and 

magnetic studies, Green's function is used to model gravitational and magnetic potentials 

originating from the subsurface mass or magnetized rocks. Let us consider this as the 

Earth's surface. 

Consider the scenario where a high-density material is located with the ambient density 

being low. This localized high-density material can act as a point source for the 

gravitational field, and the gravitational field can be modeled using Green's function. The 

field profile and the field lines can be calculated using Green's function. Analogously, if 

there is localized highly electrically conductive material among the ambient low electrical 

conductivity material, the signature in terms of magnetic and electromagnetic fields can be 

obtained using Green's function. So, these are the various applications of Green's function 

and theorem in geophysics. 

Thus, from this lecture, we understand that Green's function is an important tool to 

characterize point sources and point source-driven geophysical phenomena. In 

mathematical terms, Green's function and theorem provide a robust foundation for solving 

partial differential equations related to geophysical phenomena. These geophysical 



phenomena range from seismic wave propagation, gravitational potential, and 

electromagnetic fields. In seismic wave analysis, Green's function is an important tool for 

modeling seismic wave propagation and data interpretation. This is a very useful tool for 

understanding natural hazards like earthquake studies. 

In general, it can be said that Green's function can solve phenomena that arise due to point 

sources or localized disturbances. One can have a look at the references as shown here for 

various aspects of Green's function. Thank you. 


