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Analysis of Machine Foundations
(Elastic Half Space Method — Part 1)

Hello everyone, in last class, we have discussed about the design criteria of machine
foundation. Today, we will study the analysis of machine foundation using elastic half space

method.
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Introduction

» A block foundation can undergo following six modes of vibrations under the action of
unbalanced forces:

Vartal

1. Translation along z axis - Vertical vibration

. Translation along y axis - Longitudinal or sliding vibration
. Translation along x axis - Lateral or sliding vibration

. Rotation about z axis = Yawing motion

. Rotation about y axis - Rocking vibration
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. Rotation about x axis - Pitching or rocking vibration
o

Fig. 37.1 Different modes of vibration of a rigid
block foundation

So, in this diagram that is figure 1 what we can see, here we can see the different modes of
vibration of a rigid block foundation. So, there are 6 modes of vibration under the action of
unbalanced forces, what are those 6 modes of vibration first one is translation along z axis
alright? So, this is the first mode of vibration, second mode of vibration sorry second mode of
vibration is translation along x axis and third is translation along y axis or we can take said y

and x in this order as well.

So, for first mode of vibration which is translation along Z axis, we can measure the vertical
vibration. Likewise, when we are focusing on translation along y axis, we are getting
longitudinal or sliding vibration for x axis we are getting lateral or sliding vibration as well.
Other than these 3, there are 3 other modes of vibrations which are rotation about Z axis,

which is called as yawing motion.



Second is rotation about y axis, which is called rocking vibration and the third one is rotation

about x axis which is called pitching or rocking vibration as well.
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Vertical Vibration of Circular Foundation

Resting on Elastic Half Space

» In 1936, Reissner analysed the problem of vibration of a uniformly loaded circular area resting on an
elastic .half-space as shown in Fig. 37.2. The solution was obtained by integration of Lamb's solution
for a point load. The vertical displacement at the centre of the flexible loaded area can be given by:
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where Q, = amplitude of the exciting force acting on the foundation

2 = periodic displacement at the center of the loaded area

o= circular frequency of applied load

1o = radius of the loaded area

G = shear modulus of the soil

Q = exciting force, which has an amplitude of Q.

f,and f, = Reissner’s displacement functions (Table 37.1)

Z

Total uniformly distributed load
Q=Qoe'™

Load per unit area = —q,
L
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Fig. 37.2 Vibration of a uniformly loaded circular flexible area

Now, let us see how we can get the, how we can do that analysis of a circular foundation
resting on elastic half space and subjected to vertical vibration. So, in 1936 Reisner analysed
this type of problem of vibration where uniformly loaded circular area was considered which

is resting on an elastic half space.

Let us see the figure for this here you can see the figure for the problem. So, this is the
foundation which is circular in shape and its radius is r 0. So, if the uniformly distributed load
is Q, which can be expressed by Q 0 times e to the power i omega t where Q 0 is the

amplitude of vibration or amplitude of loading omega is the operating frequency of the



vibration or if machine is placed in that case we can say operating frequency of the machine
then what will be the load per unit area? That is q divided by the area on which the load is

acting which is circular area. So, area will be pi r 0 square in this case alright?

Now, what will be the vertical displacement? So Reissner said that the vertical displacement
at the center of the flexible loaded area can be given by the equation 1, you can see equation
1 which says that Z is equal to the load which is Q O times e to the power i omega t divided
by G times r O this entire thing is multiplying with f1 plus i times f2 What is G here? G is

dynamic shear modulus of the soil.

And if you see omega as I said this is the circular frequency of the applied load, z is periodic
displacement at the center of the circular loaded area. Other than that, there are 2 new
parameters f1 and f2 which are called as Reissner displacement function, you can see table

37.1.
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Table 37.1 Values of Displacement Function of Flexible Foundations (Bowles, 1977)

M

0 0.318310-0.092841 af +0,007405a]  0.214474 a, - 0,029561a] +0.001528 aj
025 0.238733-0,059683 a +0.004163 a} 0148594 a, - 0.017757a] +0.000808 aj

05 0159155 - 0.039789 a2 +0.002432af 0104547 a, = 0.011038a3 +0.000444 5

Here is table 37.1 where the values of displacement functions for flexible foundations are
provided what we can see in this table here, it depends f1 and f2 depends upon the Poisson’s

ratio of the soil alright.
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» Let's consider a flexible circular foundation of weight W (mass = m = %/,) resting on an elastic
half-space as shown in Fig. 37.3 and subjected to an exciting force of magnitude of Q,e/**? where
s the phase difference between the exciting force and the displacement of the foundation.

» Reissner’s provided the following solution of the amplitude of the vibration considering the
displacement relationship given in Equation (1) and solving the equation of motion:
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A, = the amplitude of the vibration

1t
A, = dimensionless amplitude = |——~1;4——;
(1-bafy)"+(bafz)

w
b = dimensionl ratio = - =

ensionless mass ratio e
p= density of elastic material and y= unit weight of the elastic material i.e. soil
G = Dynamic shear modulus of soil

wry
a, = dimensionless frequency = wry Jg = V—“
‘o

v, = velocity of shear waves in the elastic material on which the foundation is resting

Q= Qpel™a

Machine

Fig. 37.3 Flexible circular foundation subjected to forced vibration

Now, let us consider a flexible circular foundation having weight capital W resting on an
elastic half space we can show the figure here. So, in this figure what we can see? There is a
circular foundation block on which machine is resting. Other than that, what we get machine
is operating at a frequency, circular frequency omega right and what about the dimension of

the circular foundation? It has radius r 0.

So, with this Reissner provided the solution for the amplitude of vibration considering that
displacement relationship which we have seen in that previous equation 1. So, he said that A
z is equal to q 0 divided by G times r 0 whole thing is multiplied by A 0. So, let us see what is
A 0 and A z? A z is the amplitude of vibration, whereas, A 0 is an dimensionless amplitude

which can be expressed by the equation which is shown here.



So, here we can see that A 0 which is a dimensionless amplitude depends upon f1 and f2 also
it depends upon b and a 0. Now, the question then what is b and what is a 0? So, b is
dimensionless mass ratio, which can be determined by dividing the mass of the foundation to
the rho times r 0 cube, what is r 0? That is known to us it is the radius of the circular loaded

area or circular foundation.

Rho and G r density and the dynamic shear modulus of the soil. Another new parameter is a 0
which is called as dimensionless frequency that can be expressed by or determined by omega
r 0 times square root of rho by G. We already know that square root of G by rho gives us the

velocity of the shear wave. So, we can write a 0 as omega r 0 divided by v s as shown here.
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» The pioneering work of Reissner (1936) was extended later by Sung (1953) and Quinlan (1954) for the
following three contact pressure distributions on circular loaded area:

* Flexible circular base with uniform pressure for < 1 as shown in Fig. 37.4 (a):

Qo el(mrm)
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* Rigid circular base for r < 1 as shown in Fig. 37.4 (b):
Qoe‘(“'”“'

Peir =
2
2mry [rd -1

+ Paraboloc distribution below the circular base for r < 1) as shown in Fig. 37.4 (c):
Z(Té - rZ)QDel(an]
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(a) Flexible base circular foundation (b) Rigid base circular foundation (c) Parabolic pressure distribution at the
base of circular foundation

w (3b)

Fig. 37.4 Pressure distribution under a circular




Now, the work of Reissner which we have already discussed was extended later by Sung in
1953 and Quinlan in 1954 for the following 3 contact pressure distributions on circular
loaded area, what are those 3 contact pressure distributions? Let us see, for flexible circular

base with uniform pressure at when r is less than or equal to r 0 as shown in figure 37.4 a.

So, let us see the figure 37.4 a, you can see here for this case, you can see the pressure
distribution. So, for this case, how we will get the magnitude, we can use this equation that
pressure for circular base is equal to Q 0 times e to the power i omega t plus alpha divided by

pi r 0 square, simple case.

For rigid circular base, when we can see the uniform pressure distribution as you can see in
figure b, what will be the equation for that case, we can calculate P circular as shown here, Q
0 divided by e to the power i omega t plus alpha divided by 2 pi r 0 times square root of r 0
square minus r square 1 is any radial distance from the center of the circular loaded area, but

it should be less than or equal to r 0.

For parabolic distribution function that means I can show you the figure this case, what will
be the pressure distribution the pressure can be calculated by using equation 3 c, I hope all the

terms are now known for us. So, I am not explaining it.
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¢ Equation (2) i.e. 4, = 1 i

valid for all three cases of contact pressure
610\ (1-baff) +(bajs).

distributions with changed values of f, and f, as provided in following Table 37.2.

Table 37.2 Values of Displacement Function of Rigid Foundations (Bowles, 1977)

"
i

0.250000-0.1011375 af +0.0101105 aj 0214470 a, - 0.311416 aj+ 0.002444
025 0.187500-0.070313 a +0.006131a§  0.148594 a, - 0.023677 aj +0.0012114 a}

05 0.125000- 0.046875 a? +0.003581aj  0.104547 a, - 0.014717 a} +0.007170

Now, in equation 2, we get the expression for A z. So, in that expression, what I have done I
have directly written the value of A 0, which you can see here, this is nothing but A 0 right, I
can mark it. So, this is nothing but A 0. So, using we can use this equation for all the 3 cases

of the contact pressures, which are shown in previous slide, only differences that we need to



change this time that displacement function f1 and f2. And that we afford that we can use that

table 37.2 to finally find out what will be the A z for the three cases which are shown to you.

In this case also the value of f1 and the value of f2 depends upon the Poisson’s ratio mu you

can see that.
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Response of Rigid Circular Foundation

Subjected to Vertical Vibration

» Lysmer and Richart (1966) proposed a simplified mass-spring-dashpot analog to get the

response of a rigid circular footing subjected to vertical vibration. Qe Qe
» The equation of motion of this model is shown below :
Machine :F'
mi + ¢,z + kyz = Qo () 4
oo oLy, i

46 34rg*
where:  k,= I'Tr::nd = l_rz VGp.
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Fig. 37.5 Rigid circular foundation
subjected to vertical vibration

Now, what is the response of rigid circular foundation subjected to vertical vibration? So, far
we have discussed most of the cases for the flexible foundation, the initial equation which
proposed by Reissner. Then, we now we will see what will be the response of rigid circular

foundation which is subjected to vertical vibration as shown in the figure 37.5.

So, for these Reissner and Richart in 1966 proposed a simplified spring mass spring dashpot
analog to get the response of the circular rigid circular foundation which is subjected to
vertical vibration. For this the equation of motion is shown here this is a known form to all of
us. Only thing which we need to know is what is ¢ z? That means that damping and what is k

z? That is the stiffness when the soil or foundation and soil is subjected to vertical vibration.

So, for these they proposed that we should take k z is equal to 4 times G r 0 divided by 1
minus mu this one and for c z they have proposed this relationship. So, here G is dynamic
shear modulus for the soil mu is Poisson’s ratio r 0 you can see here, the radius of the circular

foundation and rho which is the density of the soil.
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» For the analog model the natural frequency, damping ratio and the vertical response are calculated by using
following Equations:

ke _ 1 [(4Gro) 1
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Now, for the analog model we can calculate natural frequency, damping ratio and vertical
vibration by using the following equations, we already actually know how to calculate the
natural frequency for a mass spring dashpot system. The same way here natural frequency for
the undamped system is first calculated, which is 1 divided by 2 pi times square root of k z by
m. So, we are finding out the frequency in cycles per second that is a reason square root of k

z by m is divided by 2 pi here all right?

Now, for damping ratio first we need to know what is the critical damping? So, we know
critical damping c z is equal to 2 times square root of k z times m. So, if we will write the
expression for k z which is 4 times G r 0 divided by 1 minus mu and that if we will multiply
that by m and take the square root of that value and again multiply by 2 as written here, we

can get the critical damping.

Also we can express these same the same thing in this form where B z is a term which
actually B z is a term I can write here in the slide it is not written. So, I am writing here what
is B z, B z is you can take 1 minus mu divided by 4 times m divided by rho r 0 Q. So, the B z

which is used here can be calculated using this expression.

Now, after calculating critical damping, we can calculate the damping ratio which is the ratio
of damping of the system to the critical damping, which is ¢ cz you can see here just I am
correcting it is c z, because right now, we are considering only the vertical vibration which is

occurring in z direction.



Now, thereafter, we can calculate the resonance frequency f m. If the force acting on the
foundation is constant force type excitation, then we can use this formulation. We have
already discussed it so I am not discussing it once again how it is coming. So, f m which is
the resonance frequency can be calculated by multiplying square root of 1 minus 2 D z square

to undamped natural frequency which is f n here.

If it is rotating mass type excitation then what we can do then we can divide f n by square
root of 14 minus 2 D z square. So, from this what we can see in case of constant force type
excitation f m is less than f n, whereas, in case of rotating mass type excitation, we can see a f
m is greater than f n. At the end actually this B z which I have already written for you is

given.
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= Q-0 B,
AGry 085/B,-018
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v Amplitude of Vibration at Resonance (for constant force type excitation): Ay(resonance) = (%)

B,

4 mye
v’ For rotating mass type excitation: A, yesonance) = T

.« (10)
v Amplitude of Vibration at Frequencies other than Resonance :
QW
VA= _—t (constant force type excitation) w (1)

2.2
1-( o) | +403( )

—_—
VA= (e /() (rotating mass type excitation) «(12)
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Now, with all these information we can also calculate the amplitude at resonance for constant
force type excitation, we will use this equation, in case of rotating mass type excitation, we
will use this equation or what we can do instead of this we can directly use the equation

which is known to us. You can use B z you may not use B z it is totally up to you.

So, if we are interested to know the amplitude of vibration at any other frequency than the
resonance frequency, then what we will do? We will use this equation alright. So, this is
basically for the constant force type excitation, what will be the amplitude of vibration for

rotating mass type excitation? In that case we will use this equation.
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Response of Rigid Circular Foundation

Subjected to Rocking Vibration

» Arnold, Bycroft and Wartburton (1955) and Bycroft (1956) suggested the L RED b
theoretical solutions for foundations subjected to rocking vibration. The
contact pressure for a rigid circular foundations can be described by the
following equation:

- IMyr cos @ E“"l W (13)

Zm';‘, y2-rl

where q = pressure at any point defined by point @ on the plan and

M, = the exciting moment about the y-axis = M] elot

d
Fig. 37.6 Rigid circular foundation subjected to rocking

So, with this will now move to the next one which is response of rigid circular foundation
subjected to rocking vibration. So, here what we can see a foundation is subjected to rocking
vibration, for that you can see Arnold, Bycroft and Wartburton 1955 and Bycroft 1956
suggested that theoretical solutions for foundations subjected to rocking vibration, what is the

solution?

First they have said how to calculate the contact pressure you can calculate contact pressure
using this equation where M y is the exciting moment about the y axis and actually, you can I
am just you just take it in alright. So, basically here it is M is equal to M y times e to the
power i omega t. M means that exciting moment about y axis which can be expressed by this
equation where M y is the amplitude of exciting moment. Now, from this we can calculate

the contact pressure g.
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» Hall (1967) developed a mass-spring-dashpot model for rigid circular foundations in the same manner as
done earlier by Lysmer and Richart (1966) for vertical vibration.
AMOTANS N

For this case the equation of motion of ghe foqndatlon can be presented as:

~

190 + g0+ kg = M,e"" )
N _ 86} _08r*fGp
where k, = static pring contant = T and ¢y = TETT
B,ls called the inertia ratio = ) ﬂ'r,
8 My
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» In this case of rocking vibration of foundations the natural frequency, critical damping and damping ratio

ot M
can be calculated as: ﬁ,— T w(15)
¥ Critical damping ¢ g = 2,/ kgl where I, = mass moment of inertia about y-axis through its base
» Damping ratio Dy = :—” w(17)
0
» Resonant frequency: f,, = f,..|1- 2D, (for constant force excitation) w (18)

(for rotating mass type excitation) (19
b s

Response of Rigid Circular Foundation
Subjected to Rocking Vibration

» Arnold, Bycroft and Wartburton (1955) and Bycroft (1956) suggested the
theoretical solutions for foundations subjected to rocking vibration. The
contact pressure for a rigid circular foundations can be described by the
following equation:

_ 3Myr cosa e“‘u w0 (13)
an‘J, 12l
where q = pressure at any point defined by point @ on the plan and

M, = the exciting moment about the y-axis = Ml elot

d

Fig. 37.6 Rigid circular foundation subjected to rocking

Now, after this Hall in 1967 developed a mass spring dashpot system for rigid circular
foundations in the same manner as it was done by Lysmer and Richart for the foundations
objected to vertical vibration which we just discussed. So, for these model when foundation is
subjected to rocking vibration that time what will be the equation of motion? This is your
equation of motion all right, what is theta if I will go back to the previous figure actually, in

case of beta I have written there theta. So, you can take here beta is equal to theta also.

So, k theta is static spring constant here and that can be calculated by using this equation. So,
here we can see k theta is a function of r 0 to the power 3 that means, r 0 is the radius of the

circular foundation it also depends upon the mu and G.



Next is damping c theta, which can be calculated using this expression that 0.8 times r 0 to
the power 4 times G rho divided by 1 minus mu divided by 1 plus B theta, where you can see
what is B theta. So, after knowing k theta after knowing c theta what we can calculate? First
we can calculate that natural frequency of the undamped system which is a f n here using the

equation 15.

Next to know the critical damping value which we can calculate using this. So, we have seen
I 0 a term that is mass moment of inertia about y axis through the base of the foundation.
Now, thereafter, we can calculate the damping ratio, which is the ratio of c theta to critical

damping c c theta.

Rest of the process are same which we have already seen. So, we can calculate resonant
frequency for constant force excitation by using equation 8 we can calculate resonant

frequency for rotating mass type excitation using equation 19.
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In this lecture analysis of foundation block under vibration is discussed using elastic half space
theory. Also following topics are discussed:

* Rigid foundati bjected to vertical vibrati

* Rigid foundation subjected to pure rocking

And, we can also calculate the amplitude of vibration, rocking vibration as well. So, here is
the summary of today’s lecture. So, today we have discussed, how to do the analysis of block
foundation under vibration using elastic half space theory. We also discuss the topic of rigid
foundations subjected to vertical vibration and rigid foundation subjected to rocking vibration
that means, moment about y axis or rotation about better I should say rotation about y axis, so

in that case also we have discussed.
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So, let us see that references these are the references which I have used for today’s class.

Thank you.



