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Micromechanics of Composites 

Hello friends, welcome to the NPTEL Online Certification Course Retrofitting and 

Rehabilitation of Civil Infrastructure. Today, we will discuss Module D. The topic for 

Module D is Fiber Reinforced Polymer Composites and its Characteristics. 
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In the previous lecture, we have discussed the properties of different types of fibers and 

resins, and their stress-strain relationships. The properties of fiber reinforced polymer 

composites, and their stress-strain relationships. The advantages and limitations of fiber 

composites and its various application in different industries. 
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In today's lecture, we will discuss the micromechanics of composites. In micromechanics of 

composite, we will discuss how we can determine the elastic modulus of composites by 

knowing the properties of the different phases that is the fiber and the matrix. 
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In a composite, the properties depend significantly upon the properties of fibers and matrix, 

and their relative proportions. The relative proportions maybe in terms of weight fractions or 

volume fractions in a composite. The properties depend significantly on the amount of fiber 

and matrix in a composite. Micromechanics of composite is the analysis of the estimation of 



load sharing by fibers and matrix based on their properties, and the micromechanical aspects 

of their volume-weighted relationships.  

So, in micromechanics of composite we determine the elastic properties of the composite at 

the fiber level, so it is the analysis at the fiber level. And by knowing the properties of the 

individual fibers and the matrix phases, and their relative proportions in terms of their weight 

and volume the properties of the composite are determined.  
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In determining the properties of composite there are several basic assumptions. The 

assumptions are that both fiber and matrix are homogeneous and isotropic. The composite 

may not be homogeneous because of the presence of fibers, but individual fibers are 

homogeneous and isotropic and also the matrix part.  

The fiber matrix and the resulting composite exhibit linear elastic behavior, we have seen in 

the earlier lecture that the stress-strain relationship of fiber and matrix are generally linearly 

elastic and the resulting composite also. Fibers are uniform, they are regularly spaced within 

the composite and perfectly aligned within them composite.  

The matrix is free of voids, the fibers are placed within the matrix and the matrix is free of 

voids, and there is perfect bond exists between the fiber and the matrix, so that no slippage 

occurs at the interface. So, we assume that the fibers are perfectly aligned, the matrix is free 

of voids and there is no delamination no slippage between the fiber and the matrix, and the 

lamina is in a stress free state.  
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To determine the volume and weight fractions there are several terminologies that are used. 

capital V with suffix c is the volume of composite. For composite we use the suffix c for 

fiber, it is the f that is used and for matrix we use m as suffix, and the volume weight and 

density are denoted as Vw and ρ respectively. So, the weight of composite is denoted as Wc 

the volume of fiber is denoted as Vf and the density of matrix is denoted as ρm and similarly 

the other fractions. 
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Now, we need to determine the fiber volume fraction, the fiber weight fraction, the matrix 

volume fraction and matrix weight fraction. So, this is an idealization of a unidirectional 



composite. We can see here this is the composite where there are two phases one is the fiber 

phase and the other is the matrix phase, though the fiber is suspended into the matrix more or 

less uniformly.  

But, however, here to distinguish the two phases, it is shown schematically as this part is 

fiber phase and this part is the matrix phase. So, this is a unidirectional composite where the 

fibers are aligned along this axis. The properties are denoted as the weight of a matrix is Wm, 

the volume of matrix is denoted as Vm and the area of the matrix is denoted as Am. The 

similarly for the fiber phase it is Wf, Vf and Af.  
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Now, the volume of composite that is 𝑉𝑐 = 𝑉𝑓 + 𝑉𝑚 that is the volume of fiber plus the volume 

of matrix. And we have assumed that there is no void, so the volume of composite is the 

summation of the volume of fiber and the volume of matrix. Now, the volume fraction of 

fiber and the volume fraction of matrix is written as this. Small 𝑣𝑓 is the volume of fiber by 

the volume of the composite.  

So, it is the volume fraction of fiber that is equal to the volume of fiber by the volume of the 

composite. Similarly, the volume fraction of matrix is the volume of matrix divided by the 

volume of the total composite. Now, if we add the two volume fractions of fiber and matrix 

that is 𝑣𝑓 + 𝑣𝑚 = 1.  

Similarly, we can write the weight fraction of the two phases. So, the weight fraction of fiber 

is small wf. So, it is the weight of fiber divided by the weight of composite.  



Similarly, the weight fraction of matrix is the weight of matrix by the weight of the 

composite. So, if we add the two weight fractions that is 𝑤𝑓 + 𝑤𝑚 = 1. So, the volume 

fraction of fiber plus volume fraction of matrix is equal to 1, and the weight fraction of fiber 

and the weight fraction of the matrix is also equal to 1. 
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Now, the total weight of the composite is the total weight of the fiber plus the total weight of 

the matrix. So, we can write the weight in terms of density and volume.  

So, 𝜌𝑐 × 𝑉𝑐 = 𝜌𝑓 × 𝑉𝑓 + 𝜌𝑚 × 𝑉𝑚. So, dividing both sides by the volume of composite we get 

𝜌𝑐 that is the density of the composite. So, 𝜌𝑐 = 𝜌𝑓 × 𝑣𝑓 + 𝜌𝑚 × 𝑣𝑚.  



So, by knowing the volume fraction of fiber and the volume fraction of matrix and also the 

densities of the two, we can get the density of the composite with this equation. Similarly, by 

replacing the volumes in terms of weights and density in equation 1. This is the equation 1, in 

this equation we are replacing the volume with weights and density we get  

𝑊𝑐/𝜌𝑐 = 𝑊𝑓/𝜌𝑓 + 𝑊𝑚/𝜌𝑚 and dividing both sides by the weight of composite we get 1/𝜌𝑐 = 

𝑤𝑓/𝜌𝑓 + 𝑤𝑚/𝜌𝑚.  

So, the density of the composite can also be written in terms of their weight fractions and the 

densities of fiber and matrix. Here in this equation the density of the composite can be written 

in terms of their volume fractions and here it is written in terms of their weight fractions, and 

also with the densities of fiber and matrix.  
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Now, we can also write  

𝑣𝑓/𝑤𝑓 = (𝑉𝑓/𝑉𝑐) / (𝑊𝑓/𝑊𝑐) = (𝑉𝑓/𝑊𝑓) × (𝑊𝑐/𝑉𝑐) = 𝜌𝑐/𝜌𝑓 

Wf, we can also write Vf / Wf , that is volume fraction by weight fraction, which is equal to 

the total volume of fiber by the total volume of composite divided by the total weight of the 

fiber by the total weight of the composite and that gives us ρc/ρf . So, we can write the volume 

fraction of fiber is equal to Wf ×(ρc/ρf).  

Similarly, Vm that is the volume fraction of the matrix is equal to the weight fraction of the 

matrix into ρc/ρm. So, these are the two relationships that are used in the subsequent analysis 



that is the weight fraction and the volume fractions are related. So, we can get the 

relationships between the volume fraction and the weight fraction of the fibers and also the 

metrics. 

(Refer Slide Time: 11:49) 

 

 

Now, here are some important notations that we need to know for further analysis. Ecl is the 

elastic modulus or Young's modulus of the composite in the direction of the fiber. C denotes 

the composite and l denotes the longitudinal direction. So, it is the modulus of the composite 

in the direction of the fiber. Similarly, σcl is the strength of the composite in the direction of 

the fiber, εcl is the strain in the composite in the direction of the fiber, Acl is the cross-

sectional area of the composite perpendicular to the direction of the fiber.  



Similarly, the transverse direction Ect is the young’s modulus of the composite in the 

transverse direction σct is the composite strength in the transverse direction, εct is the strain in 

the composite in the transverse direction and Act is the cross-sectional area of the composite 

parallel to the direction of the fiber. 

There are some more terms. Similar notations are used for fibers, as well as matrix. For 

example, Ef is the modulus of the fiber in the direction of the applied load, and σf is the fiber 

strength in the direction of the applied load. Similarly, Em is the modulus of the matrix in the 

direction of the applied load etc. 
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Now, we will discuss how to determine the elastic modulus of the composite along the 

direction of the fiber. So, it is the longitudinal strength and stiffness of the composite, and it 

is along the direction of the fiber. So, here is an idealized schematic diagram. This is a 

unidirectional composite member. We can see here the two phases are shown differently. 

This is the fiber phase and this is the matrix phase.  

The fibers are aligned along this direction, and this is the matrix. The composite is of length l. 

Though the fibres are suspended into the matrix however, for the analysis purpose we are 

showing it in this way the two different phases of the composite. The composite is subjected 

to a load you can see here a load that is the tensile force Pc. And due to this tensile force, the 

composite undergoes deformation and this is the deformed section of the composite.  



So, it elongates and this is the deformed section. The assumptions for the analysis is that the 

rod extends uniformly with no delamination between the matrix and the fiber, so here we 

assume that though it is subjected to loading the composite extends uniformly and there is no 

delamination, no slippage between the fiber and the matrix. The transverse sections that were 

plane before bending remains plain after bending. 

This indicates that the strain in the matrix and the strain in the fiber are the same. So, the εcl 

that is the strain in the composite is equal to the strain in the fiber, and also that is the same 

strain is applied under matrix parts. So, 𝜺𝒄𝒍 = 𝜺𝒇 = 𝜺𝒎 = Δ𝑳/𝑳. This part the deformation is the 

ΔL, and the strain is equal to ΔL/L. That is the original length of the composite. 
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Now, the elastic modulus can be written as stress by strain, so, for the fiber 𝐸𝑓 = 𝜎𝑓/𝜀𝑓. So, 

𝜎𝑓= 𝐸𝑓 × 𝜀𝑓, for the matrix 𝐸𝑚 = 𝜎𝑚/𝜀𝑚 or 𝜎𝑚 = 𝐸𝑚 × 𝜀𝑚.  

Now, the load is taken by the entire composite and that load is shared by the fiber part and the 

matrix part. So, the total load Pc is equal to the load shared by the fiber which is Pf plus the 

load shared by the matrix which is Pm. So, 𝑃𝑐 = 𝑃𝑓 + 𝑃𝑚.  

Now, PC can be written as sigma (σcl×Acl) and this is equal to (𝜎𝑓×𝐴𝑓 + 𝜎𝑚×𝐴𝑚), which is 

also written as in terms of the strain that is (𝐸𝑓×𝜀𝑓×𝐴𝑓 + 𝐸𝑚×𝜀𝑚×𝐴𝑚). We are replacing the 

stress by the strain and the elastic modulus.  



Since the strain is the same in the fiber as well as in the matrix so we can write that (𝐸𝑓×𝐴𝑓 + 

𝐸𝑚×𝐴𝑚) 𝜀𝑐𝑙.  
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Now, by changing this epsilon cl here, we are putting this εcl in the left side and Acl in the 

right side, we get 𝜎𝑐𝑙/𝜀𝑐𝑙 = 𝐸𝑐𝑙 = (𝐸𝑓×𝐴𝑓/𝐴𝑐𝑙 + 𝐸𝑚×𝐴𝑚/𝐴𝑐𝑙).  

This can also be written as, this equation, equation 21 by multiplying the length of the 

composite in the denominator as well as in the numerator in both these components are fiber 

and matrix. So, this Af × L is nothing but the volume of the fiber. Am × L is the volume of the 

matrix and Acl × L is the volume of the composite.  

So, this is the volume of fiber and this is the volume of composite. So, this gives the volume 

fraction of the fiber. So, this is the volume fraction of the fiber which is Vf. Similarly, this is 

the volume fraction of the matrix, which is written as Vm.  
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So, 𝐸𝑐𝑙 = 𝐸𝑓×𝑣𝑓 + 𝐸𝑚×𝑣𝑚. This equation can also be written as 𝜎𝑐𝑙 = (𝜎𝑓×𝐴𝑓/𝐴𝑐𝑙 + 

𝜎𝑚×𝐴𝑚/𝐴𝑐𝑙) = (𝜎𝑓×𝑣𝑓 + 𝜎𝑚×𝑣𝑚).  

That is, (the elastic modulus of fiber × the volume fraction of fiber) + (the elastic modulus of 

the matrix × the volume fraction of the matrix). Similarly, we have derived σcl that is the 

stress in the composite is equal to the stress in the fiber (σf × the volume fraction) + (the 

stress in the matrix × the volume fraction).  

This is known as rule of mixture. So, if we know the volume fraction of the individual 

components, that is Vf or Vm and the properties like say Ef or Em or here it is σf or σm, we can 

find out the properties of the composite and this is the rule of mixture. So, to determine the 

elastic modulus of composite the rule of mixture can be applied.  

And by knowing the volume fraction of the fiber and the volume fraction of the matrix and 

their elastic modulus, we can find out the elastic modulus of the composite in the direction of 

the fiber. Similarly, the stress in the composite can also be obtained from the rule of mixture. 

Now, the fraction of the load carried by fibers in the unidirectional lamina can be determined 

as Pf/Pc. Pf is the load taken by the fiber and Pc is the load taken by the entire composite. 

So, this way we can write it this is equal to 𝑃𝑓/𝑃𝑐 = (𝜎𝑓×𝑣𝑓)/[(𝜎𝑓×𝑣𝑓) + {𝜎𝑚(1−𝑣𝑓)}] = 

(𝐸𝑓×𝑣𝑓)/ [(𝐸𝑓×𝑣𝑓) + {𝐸𝑚(1−𝑣𝑓)}]. So, by knowing the volume fraction of the fiber and the 

matrix and their elastic modulus, we can find out the fraction of the load carried by the fiber. 



This equation can also be written as 𝐸𝑐𝑙 = (𝐸𝑓−𝐸𝑚) 𝑣𝑓+𝐸𝑚 
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This is a graph that shows the variation of the load carried by the fiber with different fiber 

volume fraction for wearing modular ratio. So, this graph shows that when the Ef / Em is very 

same, different same 1 to 100 or so, and these are the different fiber volume fraction. So, 

what is the load shared by the fiber?  

So, we can see that when the Ef / Em is more than 10. As you can see, this is plotted in a 

logarithmic scale so when it is plotted, and when the elastic modulus of fiber is significantly 

high as compared to the elastic modulus of matrix and with a significant high fiber volume 

fraction the fiber carries most of the load of the composite.  

So, we can see here when this is 10, when Ef / Em is approximately 10 or so, and the fiber 

volume fraction is a point 6 or point 7, then, about 80 percent of the load is shared by the 

fiber itself in the composite. So, it is the property of the fiber that dominates predominantly in 

the composite. So, the load is shared by the fiber and the matrix. And depending on the fiber 

volume fraction and their elastic modulus, the load carried by the fiber can be estimated. And 

significant amount of load is carried by the fiber. 
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Now, we will determine the transverse modulus of composite. To determine the transverse 

modulus composite here also we will have some assumptions. The first assumption is that 

there is no separation between the fiber and the matrix, and the fiber composite is subjected 

to a transverse loading. As we can see here, this is also an idealized schematic diagram of the 

composite, the two phases the fiber phase and the matrix phase are denoted here and this 

composite is under transverse loading.  

So, this is the transverse load applied on the composite. The thickness of the composite is tc, 

whereas, it is idealized as two different phases and the thickness of the fiber phase is tf and 

the thickness of the matrix phase is tm. Because of this transverse loading there is deformation 

in the composite in the transverse direction and this is the deformed shape of the composite 

under the loading. 

Now, in this transverse loading case each layer has the same area on which the load acts, so 

this means that each layer experiences the same load and the same stress. So, here in case of 

transverse loading the composite, the fiber and the matrix experiences the same stress. So, σct 

= σf = σm. σct is the stress in the composite in the transverse direction and that stress is the 

same in the fiber and also in the matrix.  

Now, the total transverse displacement is Δtc and that is equal to the transverse displacement 

of the individual faces that is the fiber and the matrix. So, Δ𝑡𝑐 = Δ𝑡𝑓 + Δ𝑡𝑚 where Δtf is the 

displacement of the fiber phase and Δtm is the displacement of the matrix phase.  



Now, the volume of fiber that is Vf can be written as 𝐵𝐿𝑡𝑓, where tf is the thickness of the 

fiber part, L is the length of the composite and B is the width. Similarly, the volume of matrix 

can be written as Vm is equal to 𝐵𝐿𝑡𝑚 and the volume of composite Vc can be written as 𝐵𝐿𝑡𝑐. 
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Now, the total transverse displacement is written as delta tc is equal to Δ𝑡𝑐 = Δ𝑡𝑓 + Δ𝑡𝑚 as we 

have written earlier. Now, the strain can be written as this εct is the strain in the composite in 

the transverse direction that is equal to Δtc/tc. So, this is the strain in the composite in the 

transverse direction, so Δ𝑡𝑐 = Δ𝑡𝑓 + Δ𝑡𝑚.  

Now, 𝜀𝑐𝑡 = Δ𝑡𝑐/𝑡𝑐 = Δ𝑡𝑓/𝑡𝑐 + Δ𝑡𝑚/𝑡𝑐 = (Δ𝑡𝑓×𝑡𝑓)/(𝑡𝑓×𝑡𝑐) + (Δ𝑡𝑚×𝑡𝑚)/(𝑡𝑚×𝑡𝑐) = [𝜀𝑓× (𝑡𝑓.𝐿. 

𝐵)]/(𝑡𝑐.𝐿.𝐵) + [𝜀𝑚×(𝑡𝑚.𝐿.𝐵)]/(𝑡𝑐.𝐿.𝐵) = 𝜀𝑓×𝑣𝑓 + 𝜀𝑚×𝑣𝑚  



So, from the equation 37, the relation becomes 1/𝐸𝑐𝑡 = 𝑣𝑓/𝐸𝑓 + 𝑣𝑚/𝐸𝑚. So, this is the equation 

that can be used to determine the elastic modulus of the composite in the transverse direction. 

So, it is derived from the elastic modulus of the fiber phase and the matrix phase and by 

knowing their volume fractions.  

So, this equation 38 can also be written as 1/𝐸𝑐𝑡 = 𝑣𝑓/𝐸𝑓 + (1−𝑣𝑓)/𝐸𝑚. So, by knowing the 

volume fraction of fiber and the matrix and their elastic modulus we can determine and 

derive the elastic modulus of the composite in the transverse direction.  
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This graph shows the variation of the elastic modulus of the composite in the transvers 

direction with fiber content. The fiber content are plotted in the x axis and this is the Ect for 

different Ef / Em values, so we can see here that at lower values of the volume fraction of 

fiber, there is not significant increase in the transverse modulus of the composite.  

With higher Vf values, higher is the Ect value of the composite. So, the volume fraction of 

fiber influences significantly the transverse modulus of the composite as well.  
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Now we will derive the in-plane shear modulus of the composite. The composite element is 

subjected to uniform shearing and complementary shearing stresses along the boundaries. So, 

here this is the composite, similarly, the two phases are shown separately or idealization so 

this is the fiber part and this is the matrix part, and it is subjected to shear force. You can see 

here shear stresses are shown.  

Now with this shear stresses there is deformation. This is the overall deformation, that overall 

deformation of the composite is denoted as Δc and the deformation of the fiber phase is 

denoted as Δf whereas the formation of the matrix phase is denoted as Δm, so this is the shear 

deformation. The shearing stress in the fiber and the matrix are equal.  

So, in this case since it is in-plane shear stress, the shear stresses in the fiber and the matrix 

phase are equal, thus τ𝒄 = τ𝒇 = τ𝒎 which is equal to the stress in the composite. So, τ denotes 

for the shearing stress.  
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The total shear deformation of the composite can be written as delta c and that has shown 

also in the figure that is ∆𝑐 = ∆𝑓 + ∆𝑚. That is the deformation of the fiber part and the 

deformation of the matrix part. The deformation of the composite can also be written as the 

shearing strain into the tc, that is the you can see here this is the total shear deformation of the 

composite is Δc and it is equal to Δm + Δf.  

So, ∆𝑐 = 𝛾𝑐𝑡𝑐, ∆𝑓 = 𝛾𝑓𝑡𝑓, ∆𝑚 = 𝛾𝑚𝑡𝑚  

Therefore, 𝛾𝑐𝑡𝑐 = 𝛾𝑓𝑡𝑓 + 𝛾𝑚𝑡𝑚  

Now, dividing both sides by tc we get 𝛾𝑐 = 𝛾𝑓𝑡𝑓/𝑡𝑐 + 𝛾𝑚𝑡𝑚/𝑡𝑐. And again, we are multiplying 

the numerator and the denominator with B into L that is width and the length we are getting, 

this equation 47.  

Now tf × B × L is nothing but the volume of the fiber and this is the volume of the composite. 

Similarly, this is the volume of the matrix. So, this ratio gives the volume fraction. So, this is 

nothing but the volume fraction of the fiber and this is the volume fraction of the composite. 

So, the shear strain of the composite can be written as that is 𝛾𝑐 = 𝛾𝑓𝑣𝑓 + 𝛾𝑚𝑣𝑚. 

So, this is the shear strain in the composite by knowing the shear strain of the fiber and the 

matrix and their volume fractions we can determine the shear strain in the composite. So, this 



can also be written in terms of the shear modulus and the shear stress that is τc / Gc similarly 

for the fiber part and the for the matrix part.  

And since the shearing stresses are same, we can eliminate it so we get equation 50 which is 

1/Gc that is the shear modulus of the composite 1/𝐺𝑐 = 𝑣𝑓/𝐺𝑓 + 𝑣𝑚/𝐺𝑚. So, we can determine 

the shear modulus of the composite by knowing the shear modulus of the fiber part and the 

matrix part and their volume fractions, 
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This graph shows the variation of Gc with fiber content here in the x axis Vf is plotted and 

this is the Gc. Now, with increase in fiber volume fraction the Gc also increases. So, initially 



the value is quite low nearly the Gm value but with increase in the fiber content the shear 

modulus of the composite also increases significantly.  
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Now, we will discuss the Poisson’s Ratio of the composite. For in-plane loading of a 

composite we have two Poisson’s ratio for the composite. One, is the major Poisson’s ratio 

which is denoted as νcl, which relates the longest eternal strain and the transverse strain. The 

other one is the minor Poisson’s Ratio, which is denoted as νct, which relates the transverse 

strain and the longitudinal strain.  

So, here is also a composite, which is idealized as the two-phased system. This is the fiber 

phase and this is the matrix phase, and they are separately shown here for idealization, and it 

is subjected to some loading. And because of that loading there is deformation, and this is the 

deformed shape of the composite. Now, due to this deformation the fiber phase undergoes a 

deformation, as you can see, this is denoted as Δf and the matrix part also undergoes a 

deformation that is Δm.  
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So, from the definition the major Poisson’s Ratio can be written as the lateral strain by the 

longitudinal strain. So, here for the composite the major Poisson’s Ratio that is the 𝜈𝑐𝑙 = 

−𝜀𝑡/𝜀𝑙. 

The transverse strain in the fiber and in the matrix can be written as 𝜀𝑡𝑓 = −𝜈𝑓𝜀𝑙. Similarly, 𝜀𝑡𝑚 

= −𝜈𝑚𝜀𝑙. So, these are the, this is the Poisson’s Ratio of the matrix and this is the Poisson’s 

Ratio of the fiber part. Also, we can write that the strain in the fiber that is 𝜀𝑡𝑓 = 𝛿𝑓/𝑡𝑓 that is 

the deformation in the fiber by the total thickness.  

Similarly, 𝜀𝑡𝑚 = 𝛿𝑚/𝑡𝑚 and 𝜀𝑡 = 𝛿𝑐/𝑡𝑐, which is for the composite. Now, the total deformation 

of the composite 𝛿𝑐 is the summation of the deformation of the fiber part and the matrix part. 

So, 𝛿𝑐 = 𝛿𝑓+𝛿𝑚. Now, 𝛿𝑐 can be written in terms of the strain values, so 𝛿𝑐 can be written as 

𝜀𝑡×𝑡𝑐 which is equal to 𝜀𝑡𝑓×𝑡𝑓 + 𝜀𝑡𝑚×𝑡𝑚.  

Now, we can substitute with these equations with Poisson’s Ratio what we get −𝑡𝑐𝜈𝑐𝑙𝜀𝑙 = 

−𝑡𝑓𝜈𝑓𝜀𝑙 − 𝑡𝑚𝜈𝑚𝜀𝑙. So, we get 𝜈𝑐𝑙 = 𝜈𝑓𝑡𝑓/𝑡𝑐 + 𝜈𝑚𝑡𝑚/𝑡𝑐.  

Now, this tf/tc is nothing but the volume fraction. We can multiply B into L in numerator and 

denominator and this gives the volume fraction of the fiber. And this gives the volume 

fraction of the matrix part. So, we can write νcl, which is the major Poisson’s Ratio is equal to 

𝜈𝑓𝑣𝑓 + 𝜈𝑚𝑣𝑚.  



So, it follows again the rule of mixture. So, by knowing the volume fraction of the fiber and 

the matrix and their individual Poisson’s Ratio, we can find out the Poisson’s Ratio of the 

composite. So, this is also as per the rule of mixture.  

Now, the minor portions ratio can be obtained similarly, as and we can get this relationship 

𝜈𝑐𝑙/𝐸𝑐𝑙 = 𝜈𝑐𝑡/𝐸𝑐𝑡. By knowing the major Poisson’s Ratio and the elastic modulus of the 

composite in the longitudinal direction and the transverse direction we can find out the minor 

Poisson’s Ratio of the composite using equation 59.  

(Refer Slide Time: 44:22) 

 

 

This is the variation of the Poisson’s Ratio the major Poisson’s Ratio of the composite with 

fiber content. Here this is the fiber content is plotted in this axis and this is the Poisson’s 



Ratio of the composite. Now, with increase in the volume fraction of the composite, the 

Poisson’s Ratio the major Poisson’s Ratio also increases significantly. So, this variation is 

linear, as we increase the volume fraction of the composite. The Poisson’s Ratio of the 

composite in the direction of the fiber also increases.  

(Refer Slide Time: 45:06)  

 

So, this shows that the influence of fiber on the composite the properties of composite can be 

derived from the volume fraction of the fiber part and the matrix part, and also by knowing 

their individual properties. By knowing their elastic modulus values, by knowing their 

poison’s ratio, we can determine the elastic modulus of the composite in the direction of the 

fiber or in the transverse direction of the fiber.   

The fiber volume fraction plays a significant role in determining the properties of the 

composite. If the fiber volume fraction is high, that means, the amount of fiber is high in a 

composite, the property of the composite also is better. So, the superior property of the 

composite is mainly due to the amount of fiber present in it, and also on, it depends on the 

elastic modulus of the fibers and the matrix.  

So, in today's lecture, we have discussed the micromechanics of composites, and how to 

determine the elastic modulus of composite. We have discussed the derivation of the elastic 

modulus of the composite along the direction of the fiber and perpendicular to the direction 

of the fiber how to determine the Poisson’s Ratio and shear modulus of the composite by 

knowing the individual properties of the fiber and the matrix, and their volume fractions. So, 

that is all for today's lecture. Thank you. 


