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Hello everyone! I welcome all of you to the 2nd lecture of Module 6. So, in Module 6, we are 

discussing about the rock and rock mass failure criteria. Actually, before starting the 

discussion on the rock mass failure criteria, we should discuss about the analysis of stresses. 

So, what we have started in our previous class, today also we will continue with that topic 

only. 

(Refer Slide Time: 01:00)  
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If you remember in our last class, we have discussed towards the end about the 

transformation of stresses. We will continue with that today also and then we will discuss the 

principle stresses. After that, Mohr circle and we will also briefly discuss about the 

equilibrium equation.  

(Refer Slide Time: 01:25)  

 

As we know that for the generalized state of stress at a point for 2D element, if this is xy- 

coordinate system is like this as we can see. So, this is an infinitesimal element and if the 

coordinate system is rotated about an angle θ, and x and y  come into the picture then the 

stresses on this infinitesimal element will look like this, i.e., instead of σx, σy, and τxy, they 

become x , y , and yx   or xy  . We have discussed all these things in our previous class.  
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In the previous class, before solving one problem, I have directly given you the 

transformation equations. However, today, I will discuss in detail about how those equations 

are coming. So, from the diagram we can see over here that the ABC is an infinitesimal 

wedge which is cut from the 2D element. 

Now, the AC plane is perpendicular to x . So, the stresses are like the normal stress, x  and 

the shear stress, yx  . And, the planes BC and AB are perpendicular to y-axis and x-axis, 

respectively. This, is why here the stresses are like σy, τyx and here, they are σx, τxy.  

Now, let us consider the area of AC is dA. Since this angle of rotation is θ and the area of the 

AC is dA. Then, the area of AB will be dAcosθ and the area of BC will be dAsinθ.  
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Now, from the force equilibrium, i.e., 0 xF , we will get, 
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
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Now similarly, if I go for the 0 yF , then 
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Now, we can see that y  axis makes an angle (θ + 90ο) with the x axis. Therefore, y  can be 

derived from Eq. (1) by replacing the θ with (θ + 90ο). ` 
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



 
  xy

yxyx

y  

)2sin()2cos(
22


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


 2sin2cos
22

xy

yxyx

y 





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
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   … (3) 

So, in this way, we can get these three transformation equations from our fundamental 

knowledge.  

(Refer Slide Time: 09:50)  

 

Now, in this slide, the three equations have been written in the compact form.  

(Refer Slide Time: 10:15)  

 

Now, let us discuss about the principal stresses. As we can see over here that the area (ΔA) on 

plane P and the force (F) is acting on that area. So, we can resolve the force (F) into two 
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components Fs and Fn, where Fn is normal to that plane and Fs is along to the plane P. So, we 

Fn is the normal force and Fs is the shear force.  

Now, if we look into the diagram, we can see that the force (F) is having only the normal 

component which is actually the Fn and there is no shear component (i.e., Fs). So, we can say 

that the plane P is called the principal plane at a point. The normal direction is called the 

principal direction and the normal stress (σn) is called the principal stress.  

So, the principal stresses are those acting on principal plane where shear stress is zero. That is 

why, the shear force (Fs) is zero and the shear stress is also zero. So, this plane is the 

principal plane and the stress (σn) acting on that plane is the principal stress.  

(Refer Slide Time: 12:09)  
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So, this is the principal stress (σn) on the principle plane where the shear stress is equal to 

zero. So, following the Eq. (2), 0yx   

Hence, we can write, 02cos2sin
2
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
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
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
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Now, if I draw a simple triangle so that from here, we should able to get some idea about the 

cos 2θp and sin 2θp. If this angle is 2θ, the vertical side is 2τxy and the horizontal side is (σx – 

σy). So, the hypotenuse side is 22 )2()( xyyx   . 

Hence, 
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
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Hence, θp gives the orientation of the principal plane. 
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Now, we will try to find out the principal stresses with respect to the principal plane. 

So, we know that 
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Here, the σ1 is known as the major principal stress.  
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Similarly, 
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Here, the σ3 is known as the minor principal stress.  

 (Refer Slide Time: 22:15)  
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Now, let us take this problem. The state of stress of a 2D element shown in the figure. Find 

out the major and minor principle stresses of the element. In this problem, the σx normal 

stress is compressive in nature which is considered to be positive, whereas σy is tensile in 

nature. So, it is negative.  

The shear is also considered as positive and τxy is equal to 50 MPa.  

So, σx = 100 MPa, σy = -100 MPa, and τxy = 50 MPa 

Now, the major principal stress, σ1 can be calculated as follows: 
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80.1111   MPa 

So, the major principal stress ( 1 ) is 111.8 MPa. 
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And similarly, we can get the minor principal stress ( 3 ). The major principal stress, σ3 can 

be calculated as follows: 22
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
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So, the minor principal stress ( 3 ) is 111.8 MPa. 

 

 (Refer Slide Time: 27:06)  
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Now, we will just briefly discuss about the Mohr-Circle. Using the Mohr-Circle, we can very 

easily find out the transformation of stresses. So, what we have learned with the help of 

equations, we can also obtain the same thing with the help of Mohr-circle also. So, let us 

consider the planes which are M plane and N plane.  

So, in the M plane, 
xyx  ,  are the normal stress and the shear stress, respectively, and in the 

N plane,  
yxy  ,  are the normal stress and the shear stress, respectively. Now, let us take this 

orientation where yx   is the new coordinate system, and the angle between x and x  is θ. So, 

on the plane perpendicular to x  , the normal stress and the shear stress are x and yx  , 

respectively. Now, let us consider this plane as M’ plane and here, it is the N’ plane where the 

normal and the shear stresses are y and xy  , respectively.  

 (Refer Slide Time: 28:24)  
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Now using Mohr-circle how can we get the x , y , and yx  ? As we know that we need two 

axes to draw the Mohr-circle. One is the shear stress axis and another one is the normal stress 

axis. Now first, we have to identify 
xyx  , and

yxy  , . If we look into the M face, the stresses 

are xyx  , , and in the N face, the stresses are yxy  , . 

So, we have to locate xyx  , , which are stresses on M plane, on the σ-τ plane. If the numerical 

values are given to us, we can easily locate these values.  

We have considered the sign convention as for the normal stress, compression is considered 

to be positive and for the shear stress, the clockwise rotation is considered to be positive. So, 

if we look into the M face, the shear stress (τxy) is creating the clockwise rotation which we 

have considered as the positive.  
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Similarly, we can identify the state of stress on N face which is (
yxy  , ) or (

xyy  , ) as we 

have learnt from the previous class that
xyyx   .  The negative sign is coming as the shear 

stress on this N plane (τyx) is creating the anti-clockwise rotation but what we have considered 

over here that the clockwise rotation is positive for shear stress. That is why, the negative 

sign is coming.  

Now, if we connect (
xyx  , ) and (

xyy  , ), it will intercept this normal stress axis at a point, 

suppose O. So, the point O defines 






 

2

yx 
. Now, 2

2

)(
2

xy

yx













 
defines the 

radius of the Mohr-Circle. We can very easily find out the radius, the horizontal distance 

from O to M will be 
2

yx  
 and the vertical distance between O and M will be xy . So, the 

radius of the circle (OM) will be
2

2

)(
2

xy

yx













 
. Thus, considering this distance OM 

as the radius, we can very easily draw the Mohr-circle. 

Now, once we draw this Mohr-circle, then the farthest intercept of the circle in the σ-axis will 

give the magnitude of major principal stress ( 1 ) where the shear stress is zero. Similarly, the 

nearest intercept of the circle in the σ-axis will give the magnitude of minor principal stress 

( 3 ) where the shear stress is also zero. So, the magnitude of 3 is less than the magnitude 

of 1 . Now, if we have to find out the state of stress for this orientation, i.e., for the planes M’ 

and N’ where the M’ face is oriented at an angle θ with the x-axis. So, the state of stress on M’ 

face is ( x , yx  ) and we can get it graphically from the Mohr-circle.  

So, after drawing the Mohr-circle, we will consider an angle 2θ from MN as the angle θ in 

stress element will be equal to angle 2θ in Mohr-Circle. Thus, if we draw the line OM’ which 

is at angle 2θ from OM line, it will give us the state of stress on the plane M’, i.e., ( x , yx  ). 

Similarly, ON’ line will give the state of stress as ( x , yx  ). So, by using the Mohr-Circle, 

we can obtain the state of stress graphically at any orientation. 
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Now, let us discuss about the equilibrium equation. So, for this infinitesimally small element, 

the sides are dx and dy. The stresses acting on the AD side are ( xyx  , ). So, on the BC face, 

the normal stress will be 











 dx

x

x
x


  and the shear stress will be 












 dx

x

yx

xy


 .  

Similarly, for DC face, the state of stress will be ( yxy  , ) and in AB face, the state of stress 

will be

















 dy

y
dy

y

yx

yx

y

y





 , . 

Now, if we consider bx and by are the body forces in x and y directions, respectively, by 

considering the equilibrium of forces for the 2D element, we can write 0 xF  

0





























 dxdybdxdy

y
dxdydx

x
dy x

yx

yxyx

x

xx





  

0








 x

yxx b
yx


 

Similarly, by considering, 0 yF  

We can get, 0








y

yxy
b

yx


 

In this way, we can get the equations of equilibrium for 2D element. 
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So, we have obtained the two equations for 2D element which are 

0








x

yxx b
yx


 

0








y

yxy
b

yx


 

If we extend this logic for the 3D element, the equilibrium equations will be 

0













x

zxyxx b
zyx


 

0













y

zyyxy
b

zyx


 

0













z

zyzxz b
zyx


 

Here, the first one is for the x direction. The second one is for the y direction. Similarly, the 

last one is for the z direction. Hence, σz is also coming into picture along with τxz and τyz. So, 

for the 3D case, these three will be the equilibrium equations.  

(Refer Slide Time: 37:50)  
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So, the general state of stress at a point for 3D element when the element is at an angle θ with 

the horizontal: it will be xx  instead of xx . Here, we can write only x instead of xx as 

discussed in the previous lecture as we know for the normal stress, if the plane on which the 

stress is acting, perpendicular to a particular axis and the direction of the stress is also in the 

same direction, we can write only the one symbol.    

So, instead of writing σxx, you can write σx. Similarly, instead of writing xx  , we can write 

x  only.  

However, this is the general state of stress at a point for 3D element when this kind of the 

rotation of axis is happening (refer to the diagram). The stresses will be looking like these.  

So, with this let us conclude our today's lecture here only. So we will further discuss about 

these stresses and subsequently we will enter into our main discussion that is on the rock 

mass failure criterias. Thank you. 


