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Hello everyone! I welcome all of you to the 1st lecture of Module 6.  
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In module 6, we will discuss about the rock and rock mass failure criteria. So, let us see what 

we will discuss today.  

(Refer Slide Time: 0:46) 

 

Today we will discuss about the stress analysis. Then Normal Stress and Shear Stress, then 

Stress Tensor, and Transformation of Stresses.  



(Refer Slide Time: 01:02) 

 

The pre-existing stresses are there in the rocky ground, which is mainly the in-situ stress. 

Other than that, during any engineering work, pre-existing stresses are redistributed. As a 

result, the induced stresses come into the picture.  
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Now what is stress? Let us consider a three-dimensional body and it is constrained at B.  

Now these are the different forces, like traction (Ft) is acting like this, then the body forces 

(Fb) are like these, then the point loads are acting like these, F1 and F2. If these forces act 

over this body, the stresses will develop. Now let us take an arbitrary plane P, which is 

actually bisecting this body into two parts like Ω1 and Ω2. Now, if we only consider the Ω1 



part then and if we consider an infinitesimally small area, then let us consider the resultant 

force (F).  

Now, if we have this XYZ coordinate system then we can resolve this force, F into three 

components like Fx, Fy, and Fz. So now and ΔA is the small area as I have stated. So, we can 

represent the force vector as kFkFiFF zyx  . Here, i, j, and k are the unit vectors, i.e., i is 

for x-direction, j is for y-direction, and k is for z-direction.  

So, this is the representation of force. Now, what is stress? The stress is generally represented 

by the symbol σ, which can be expressed as 
A

F

A 


 0
lim  

 (Refer Slide Time: 04:18) 

 

So, form the figure, we can see that this is the P plane and ΔA is the small area, and F is the 

resultant force. Now, it is resolved into two components, one is the normal component, Fn (in 

the normal direction), i.e., normal to this ΔA or normal to this plane P and the other one is the 

shear component, Fs.  

If Fn is the normal component of this force vector, F then 
A

Fn

A
n




 0
lim  and similarly the 

shear stress can be defined as 
A

Fs

A
n




 0
lim .  
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Now, let us learn about the stress tensor. So, let us see the small 3D element. What are the 

stresses will act in the element? If this is the coordinate system, we will have one normal 

stress and two shear stresses, σxx, τxz, and τxy. Now, here you can see the suffix xx or xy. What 

do they represent? let us try to understand.  

So here σij, i is the first suffix and j is the second suffix; i is basically the normal direction on 

the small area (ΔA), over which the force is acting. So, i indicates the normal direction on the 

small area and j denoted the direction in which the stress component is acting.  

Now, i is the normal direction on the small area and j is the direction in which component 

acts. Now accordingly let us complete all the other stress components acting on the faces of 

the element.  In the face normal to the y-axis, the stress components are σyy, τyx, and τyz. 

Likewise, in the face normal to the z-axis, the stress components are σzz, τzy, and τzx. Here, 

they are the σzz, τzy, and τzx, equal and opposite stresses, in the hidden faces.  

So, as we can clearly notice that the shear stresses are also acting in the opposite directions.  

The τxy defines the shear stress acting on the plane perpendicular to x-axis and is directed 

towards y direction. So, the first x is the plane perpendicular to x-axis and y is the direction 

towards which the stress is acting.  

Now, what is the stress tensor? The tensor is a quantity which has the magnitude, direction, 

and a plane under consideration. That is what I have stated that a tensor is a quantity with 

magnitude, direction, and a plane under consideration.  

Now we can write all these stresses in the matrix form given as follows: 





















zzzyzx

yzyyyx

xzxyxx

T






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For our convenience, we generally analyze the problem as a plane strain problem, i.e., in 2D 

plane.  

What are the stress components that will come for the 2D element? They will be σxx and τxy. 

So, here why is it xx? Because, the face or the plane on which the stress is acting, is 

perpendicular to the x direction and the next x is for the direction in which the stress is acting. 

So, we can see that the normal stresses are compressive in nature. So, in this discussion, we 

are considering the compression as the positive stress convention.  

So, this is the σxx which is the normal stress, both the plane as well as the direction are x. 

Generally, what we can do instead of writing it like σxx, we can write only σx. Likewise, 



instead of σxx, we can generally write only σy, because the y is repeating twice because first 

one is for plane and the second one is for direction, both are y.  

But in the case of shear stresses, xy it is important for tau τxy as the first suffix x is related to 

the plane and the second suffix y is related to its direction. So, when we solve a problem in 

2D, then the matrix reduces drastically. In the case of 3D element, the stress matrix was a 

33  matrix. So, there were nine stress components.  

Now, if we only deal with the 2D problem, 









yyyx

xyxx
T




. It will be a 22  matrix having 

four stress components.  
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Now, let us draw a 2D element. So, here they are σx, σx, σy, σy. So, this one is τxy, whereas this 

one is τyx. Similarly, this one is τyx and this one is τxy. We know that the first suffix represents 

the plane and the second suffix represents the direction.  

Now, let us consider the dimensions which are dx in x-direction and dy in y-direction. This is 

the xy-coordinate system and let us give some name of the elements like ABCD. Now, this σx, 

σy, τxy, and τyx are acting like this, i.e., σx is acting on BC face which is equal to the σx, same 

amount of stress acting on the AD face.  

Here, the force equilibrium is getting satisfied as the acting forces are equal and opposite. 

Now, if we take moment about point D,   0dM . so what will happen? If we consider τxy, 

this side is dy and if we consider in out of plane direction, the length or width is 1.  

The total force is )1.(xy dy . Now, to take moment about D, we need to be multiply the 

force with dx. Here, we are considering the clockwise moment which is considered to be 

positive and now what we can see that τyx component acting on AD face and τxy component 

acting on CD face are passing through D. Hence, they will have no contribution.  

Now, the force )1.(yx dx  is creating the anticlockwise moment.  

We can write, 0)1.()1.( yxxy  dydxdxdy  . So, finally we can get, yxxy   .  

Thus, we can get, zyyz    and xzzx   from yz and zx planes, respectively.  

Since yxxy   for the 2D element, we need to deal with only these three stress components. 

Thus, 









yy

xyxx
T




 

Similarly, yxxy   , zyyz   , and xzzx   for the 3D element. So, we need to deal with 

only these six stress components for the 3D element. 

Thus, 



















zz

yzyy

xzxyxx

T







  



(Refer Slide Time: 23:53)  

 

Now, let us see the general state of stress at a point for a 2D element. This side and this side 

are parallel to x-axis and this and this sides are parallel to y-axis. Now, the coordinate system 

is rotated by an angle θ. Thus, this side is making an angle θ with the x-axis, similarly, this 

side is also making an angle θ with the x-axis and these sides are making also θ with the y-

axis.  

So, now we will consider a new coordinate system, i.e., x’-y’ coordinate system. So, 

accordingly this is x  and this is also x , equal and opposite, likewise yx  , yx  . Now, y , 

y , similarly, xy  , xy  .  
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What are the expressions of x , y , and yx   in terms of the known stress components like 

σx, , σy, and τyx? It can be obtained by doing a simple small derivation.  

I am not going into that derivation, as we can derive it from the first year mechanics. 

However, it is a very derivation. Here, I am writing the expressions only as this 

transformation of stresses will be quite useful in our future classes.  

So, the expressions for x , y , and yx  are as follows: 




 2sin2cos
22

xy

yxyx

x 








 










 
  




 2sin2cos
22

xy

yxyx

y 








 










 
  




 2cos2sin
2

xy

yx

yx 






 
  

So, these three are the expressions which we can derive very easily but anyway here I have 

directly written the expressions due to the time constraint.  
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Now, let us solve a small problem with that will conclude our today's class. So, it states that 

the state of stress of a 2D element is shown in this figure. The element is having τxy or τyx is 

equal to 20 MPa. The coordinate system is rotated by an angle of 30ο in clockwise direction. 

Determine the state of stress of the transformed element.  

So, as per the problem, the rotation is 30ο in clockwise direction. But, the expressions are 

given based on the anti-clockwise rotation. So, in this problem, the θ value will be negative.  

So let us solve it.  

So, first 


 2sin2cos
22

xy

yxyx

x 








 










 
  

 



which can be rewritten as 


 2sin2cos
22

xy

xyyx

x 








 










 
  

As per the problem, σx = 70 MPa, σy = 80 MPa, τxy = 20 MPa, and θ = -30ο. 

So, )]30(2sin[20)]30(2cos[
2

7080

2

8070  






 








 
x  

)60sin(20)60cos(
2

7080

2

8070  






 








 
x  

18.55x  MPa 

Similarly, 


 2sin2cos
22

xy

xyyx

y 








 










 
  

)]30(2sin[20)]30(2cos[
2

7080

2

8070  






 








 
y  

)60sin(20)60cos(
2

7080

2

8070  






 








 
y  

82.94y  MPa 
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Finally, 


 2cos2sin
2

xy

yx

yx 






 
  

 i.e., 


 2cos2sin
2

xy

xy

yx 








 
  

)]30(2cos[20)]30(2sin[
2

7080  






 
y  

)60cos(20)60sin(
2

7080  






 
yx  

67.5yx  MPa 



So, 18.55x  MPa, 82.94y  MPa, and 67.5yx  MPa.  

So let us stop here, we will continue our discussion with this stress transformation and we 

will also discuss about the principal stresses in the next lecture. So thank you.  


