
Secure Computation - Part I

Prof. Ashish Choudhury

Department of Computer Science

International Institute of Information Technology, Bangalore

Module - 1

Lecture - 6

Recap of Basic Concepts from Cryptography

(Refer Slide Time: 00:34)

Hello everyone. Welcome to this lecture. Plan for this lecture is as follows: So, we will have a

very brief discussion regarding cryptography; what are the goals of encryption schemes; types

of cryptographic primitives used.

(Refer Slide Time: 00:48)

So, as I said in one of my earlier lectures, one of the main applications of cryptography is to

perform secure communication. What do I mean by secure communication? So, the setting is

as follows: You have a sender; you have a receiver; with no pre-shared information; and they

are connected via public open channel. Now, cryptography provides you various encryption

schemes, algorithms, using which sender and receiver can emulate a secure channel on top of

this public open channel.

And what do I mean by emulating a secure channel? By emulating a secure channel, I mean

that this channel will give you the following guarantees. It will give you the guarantee of

privacy or confidentiality. Namely, whatever communication is happening over the channel,

even though it is happening over the public channel, for a third party different from sender and

receiver, it will be a completely meaningless communication; it cannot make out anything of

that communication.

That is roughly the goal; or that is roughly the meaning of privacy. By emulating a secure

channel, I also mean that the authenticity of the communication is guaranteed. That means,

both 𝑆 and 𝑅 will have the guarantee that whatever messages or packets they are receiving over

the public open channel has indeed originated from the right person or a right entity. And the

third property of this secure channel emulation is that it should maintain the integrity of the

communication.

That means, even though the communication is happening over the public channel, if there is

a third party who has changed or who has tampered the communication, say by dropping few

packets or by inserting few packets or by say reordering few packets, then it will be detected

at the corresponding receiving end. So, that is what the main goal of cryptography is.

(Refer Slide Time: 03:10)

So, it turns out that we have different types of cryptographic primitives depending upon the

requirements. The first category of cryptographic primitives, they are called as symmetric-key

primitives often known as private-key cryptography. Why it is called symmetric-key

cryptography? Because, here the encryption algorithm as well as the decryption algorithm, they

operate with the same key 𝑘.

So, we imagine that there will be some key or common bit string. Do not get confused by this

symbol of key; that is just for your understanding. So, you can imagine that there will be a

common bit string denoted by 𝑘, that serves as a key for an algorithm which the sender is going

to use. And that serves as the key even for some algorithm which the receiver is going to use.

Since same key is used at both the ends, that is why it is called as symmetric-key algorithms.

And why it is called private-key cryptography? Because, the security of the entire

communication depends upon the fact that this key should be known only to the sender and the

receiver. It should not be known to any third party. Now, this type of cryptographic primitives

has its own advantage and disadvantage.

The good part of these primitives is the following: They are computationally very efficient,

very fast. That means, the encryption process, the decryption process, they will be super fast.

But the downside is that they work under the assumption that a common bit string, namely a

common key is kind of established or already known to the sender and the receiver. But that

goes against the assumption that I made when I described a secure communication problem.

There I said that sender and receiver start with no pre-shared information. That means, we can

use symmetric-key cryptography or symmetric-key encryption algorithms only if we have a

mechanism to ensure that the sender and the receiver agree on some random common bit string

𝑘, known only to them, which is often called as the key agreement problem. The second class

of cryptographic primitives, they are called as asymmetric-key primitives or public-key

cryptography.

And unlike your symmetric-key primitives, here, the same key is not used both for encryption

and decryption, or, the same key is not used by both the parties. So, different parties will be

using different keys for different purposes. There will be one key which will be available with

the sender, which will be used for encryption. And to perform the decryption, there will be a

secret-key which is available only with the receiver.

So, since different keys are used for encryption and decryption, that is why the terminology

asymmetric-key. And why it is called public-key? It is not the case that both 𝑝𝑘 and 𝑠𝑘 will be

available in the public domain. The key 𝑝𝑘 which is used for encrypting the messages will be

available in the public domain, whereas the decryption key will be available only with the

receiver.

Now, again, this category of cryptographic primitives has both advantages and disadvantages.

The advantage is that, unlike your symmetric-key primitives, the key agreement is not required

here. Just make the public-key available in the public domain. Anyone who wants to encrypt a

message and send it to the receiver has to take that public-key, encrypt the message and

communicate to the receiver.

This is unlike your symmetric-key primitives, where both for encryption as well as decryption

you need the same key, and hence, the privacy of the key is very crucial there. However, the

downside is that they are computationally inefficient compared to symmetric-key primitives,

and they take enormous amount of time if we want to encrypt messages using public-key

encryption schemes.

So, now, since we have 2 different types of primitives with different trade-offs, you might be

wondering which one to use in practice. It turns out that, in practice, we use a combination of

both of them.

(Refer Slide Time: 07:48)

So, now, let us go little bit deeper into the syntax of these 2 categories of encryption schemes.

So, private-key encryption schemes operates as follows: So, this category of encryption

schemes assumes that there is a some common random bit string of certain length denoted by

𝑘, which has been already shared in advance; that is why I highlighted it; by some mechanism.

And how it will be shared in advance? We will see it later.

But this category of encryption schemes make the assumption that the key has been already

shared or agreed upon between the sender and the receiver. Now, given this setup, if sender

has some bit string or some message 𝑚, which it wants to securely communicate to the receiver,

then it can do the following: So, this bit string 𝑚 or the message of the sender is often called

as the plaintext, because it is available in plain or in clear to the sender.

Sender will have some encryption algorithm available, whose details will be publicly known.

And that will be, the details will be publicly known as part of the details of the symmetric-key

encryption process. So, this encryption algorithm will take the sender's plaintext and the key,

and it will produce another binary string denoted by 𝑐, which we call as a ciphertext or

scrambled message.

And this scrambled message will be communicated over the public channel. Now, the

receiver’s goal will be to convert back this scrambled message into the sender's plaintext. And

for doing that, receiver will have to use a decryption algorithm, which is again publicly known

as part of the details of the encryption scheme. Now, the decryption algorithm will take the

same key which sender has applied or used and take the scrambled message, and it will produce

back the plaintext which sender has actually converted from plaintext to the scrambled text.

Now you can see that why it is called symmetric-key encryption scheme. Because, the same

key is used for converting your plaintext into ciphertext, as well as for converting ciphertext

back to the plaintext. Of course, I have not defined here the security properties, guarantees and

so on. Those details are not required for this specific course. But you just need to understand

how exactly a symmetric-key encryption scheme operates. So, some of the popular examples

of symmetric-key encryption schemes are AES algorithm, Triple DES, One-time pad and so

on.

(Refer Slide Time: 10:59)

So, now, to understand exactly how the private-key encryption works in practice, let me give

you a very simple analogy. This is the way a symmetric-key encryption works. Sender and

receiver will already have a common bit string. Whenever sender has a plaintext which she

wants to communicate to the receiver, she applies the encryption algorithm; converts the

plaintext into the scrambled text; scrambled text goes to the receiver; receiver applies the

decryption algorithm and get converted back into the plaintext.

So, the way you can imagine the operation of the symmetric-key operation is as follows: You

imagine that sender has a lock here, and there is a secret-key combination to open this lock.

And that secret-key combination is somehow already shared between the sender and the

receiver. Now, imagine sender has some document, physical document which she want to

securely communicate to the receiver.

So, what she can do is, she can buy a box; she can keep the document inside the box; and she

can lock the box using the key that she has with her; and now, she can courier this locked box

to the receiver. That means, this locked box is now communicated over the public channel. So,

you can imagine that getting this locked box delivered through a courier, is equivalent to

communicating the ciphertext over the public channel.

Now, how the receiver is going to get back the document which sender has kept inside the box?

So, since we are assuming that the receiver also have the same secret-key combination, it can

apply that secret-key combination and open the lock. Once the lock is opened, he can open the

box and find out the document. Now, if there is a third party, say the person who has actually

delivered the courier; if there is a third party, and if the goal of the third party is to find out the

contents of the box, then, to obtain the contents of the box, the third party has to open the box.

But for opening the box, he has to actually open the lock. But for opening the lock, this third

party needs the secret-key combination. So, assuming that without a secret-key combination

he cannot open the lock, he cannot see the contents that are kept inside the box. And that

ensures the privacy of the documents. That is exactly the way your symmetric-key encryption

works as discussed above.

(Refer Slide Time: 13:56)

Now, let us see the syntax of public-key encryption or asymmetric-key encryption. So, imagine

this guy, Ram, is the receiver. As part of the public-key encryption scheme, Ram will have 2

keys. There will be an encryption key which will be denoted by 𝑝𝑘 and there will be a

decryption key denoted by 𝑠𝑘.

(Refer Slide Time: 14:18)

Now, this encryption key will be made available in the public domain. By public domain I

mean, say for instance, it might be available in the web page of the receiver, homepage of the

receiver or in some public domain. And it will be certified that, okay, this bit string 𝑝𝑘;

remember, 𝑝𝑘 is actually a bit string, but just for the sake of your understanding, I am using a

key symbol here. So, it is a bit string whose purpose is to serve as an encryption key, and its

value will be available in the public domain.

Everyone will know that, okay, this bit string is actually the encryption scheme of an entity

called Ram. Now, if there is a person called Sita or a sender who wants to encrypt a message

and send to the receiver, then in the public-key encryption scheme, this is the way she will be

encrypting her message. There will be an encryption algorithm, which I call as 𝐸𝑛𝑐, whose

details will be publicly known.

The encryption algorithm will take the sender's plaintext and the encryption key, and it will

produce the scrambled text. Now, the scrambled text will be communicated over the public

channel. To convert back the scrambled text or the ciphertext back to the plaintext, the receiver

we will be applying a decryption algorithm, which again is publicly known; the algorithms are

never kept secret.

The decryption key will take the scrambled text and the decryption key 𝑠𝑘 which is available

only with Ram, and it will produce back the plaintext. Now, the security guarantee that these

encryption schemes provide is the following: If there is an adversary or third party or an

attacker who knows the public-key, who got access to the ciphertext, who even knows the

description of the encryption algorithm, the that party cannot find out what exactly is the

message.

That roughly is the loose definition of security of asymmetric-key encryption scheme. So,

everything is known to the adversary except the decryption key. Only when the decryption key

is available; even the details of the decryption algorithm is also publicly known, everything is

known to the attacker. The only thing that is not known to the attacker is the value of this bit

string 𝑠𝑘.

So, now you can see that why it is called asymmetric-key encryption. Because, different keys

are used for encryption and decryption. One key, namely the public key 𝑝𝑘 is serving the role

of encryption key, and another key is serving the role of the decryption key. Now, this type of

encryption schemes has tremendous advantages. The main advantage is that you no longer

require to do a prior key agreement.

Namely, if the person, receiver or Ram wants to get messages communicated to him securely,

he need not know the identity of the sender in advance. What he has to do is, he has to generate

a public-key or the encryption key and a decryption key and just make the public-key available

in the public domain, that is all. Whoever is the sender and wants to communicate a message

privately to the receiver, just have to look for the receiver's public-key from the public domain,

and that is all.

Receiver does not have to worry about who is going to be the sender, about whether she should

provide him a secret-key and so that only he can do the secure communication to her; those

things are gone now. And another advantage is that it is not needed to store several secret-keys

for each possible sender. So, in the case of symmetric-key encryption scheme, there has to be,

or specific key 𝑘 shared between the sender and the receiver.

So, if I consider the viewpoint of the receiver 𝑅, and if there are 2 potential senders 𝑆1 and

S𝑆2 who would like to securely communicate to 𝑅, then in the symmetric-key world, we need

different keys, different in the sense independent keys.

One key, 𝑅 will be using while doing secure communication with 𝑆1. And there should be

another key, independent key 𝑘2 which should be used to perform secure communication with

𝑆2. The same key 𝑘1 cannot be used for both performing secure communication with 𝑆1 as well

as 𝑆2 in the symmetric-key world. Because, in that case, if 𝑆1 is using the key 𝑘1 and 𝑆2 is also

using the key 𝑘1, then 𝑆2 can simply go and eavesdrop the communication between 𝑆1 and 𝑅,

and find out what is happening between them.

So, that is why, in the symmetric-key world, we need an independent key for every pair of

sender and receiver. But if you consider the public-key world, that need not be the case. It does

not matter how many senders are there.

(Refer Slide Time: 20:28)

It could be hundreds of senders. Receiver just need to maintain 1 public-key and 1 secret-key

or the decryption key. All of them are going to use the same public-key and encrypt messages

and communicate to the receiver. So, even if 𝑆2 goes and eavesdrops the communication

happening between 𝑆1 and 𝑅, since 𝑆2 does not have the decryption key 𝑠𝑘, she cannot decrypt

the contents and get back to plaintext. So, the examples of this class of encryption schemes are

your popular RSA encryption scheme, El Gamal encryption scheme and so on.

(Refer Slide Time: 21:03)

Similar to the case of symmetric-key encryption, let me give you a real life analogy of how

you can understand the operation of public-key encryption. Imagine this is your receiver, and

receiver has generated 2 things. It has a padlock. And by padlock I mean, for locking it, you

just need to press it. If you just press it, it gets locked, but to open it, you need the key.

That means, for locking you do not require the key, but for opening you required the key. Now,

what this receiver can do is the following: It can make this opened; it can make available the

padlock in an open state in the public domain. Say, it keeps it in the post box; it keeps it in the

post office and indicates in the post office that, okay, whoever wants to communicate any

message privately to me can use this padlock; and the padlock is in the open state, remember

that.

Now, imagine there is a sender who has some document. Now, sender wants to use this padlock

and communicate the message securely to the receiver. So, what the sender can do is, she can

go to the post office along with some box. Inside the box, she can keep the documents; take

the padlock and press it, and the box get locked. And now, she can send the locked box using

the postal service.

That is equivalent to ciphertext getting communicated over the public channel. And now, the

receiver, since he possess the key for opening the padlock, he can apply the key and get back

the document. So, that is an analogy of your public-key encryption. Again, if there is a third

party, say the staff of the post office, who knows the details of this padlock; who is actually

seeing the locked box going.

But since the post office staff does not know the value of this opening key or padlock key, they

cannot open the padlock. And hence they cannot go and see the contents or the documents kept

inside the box. That is a very loose analogy of the way public-key encryption works. So, now,

you might be wondering what kind of encryption schemes we use in real-world communication

protocols.

(Refer Slide Time: 23:35)

Say for example, the SSL protocol. So, most in real-world communication, whenever we want

to do secure communication, we basically use an SSL protocol. There are various versions of

SSL protocols. And this SSL protocol has 2 stages; and for various stages, we use different

kinds of cryptographic primitives. So, in stage number 1, a common secret-key will be agreed

between the sender and the receiver over the public channel.

And this is done using public-key cryptography. Now, once the secret-key is agreed upon

between the sender and the receiver, the actual secure communication starts in stage 2 of the

SSL protocol using private-key crypto. So, that is why, you can see that we use best of the

both. You might be wondering that why we do not do both stage 1 and stage 2 using public-

key crypto. Because, key agreement would not be required.

We do not do that because, as I said earlier, the overhead associated with public-key crypto is

tremendous. So, that is why we do not want to do the encryption of the entire session

communication happening between the sender and the receiver using the public-key crypto. It

is only for a small portion of the communication, namely, just for doing the key agreement, we

use the public-key cryptography component.

Once the key is established between the sender and the receiver, we actually resort to

symmetric-key cryptography for performing the actual secure communication. So, let us see.

Let us try to understand how it happens. Imagine this is my sender; this is my receiver. And

sender, in her browser, types https://ram.com. So, as soon as you type https, your SSL protocol

starts getting executed. Now, as soon as Ram receives this communication request from sender,

namely an https request, what Ram does is the following:

(Refer Slide Time: 26:00)

It generates a public-key secret-key pair.

(Refer Slide Time: 26:08)

And it sends the public-key, namely the opened padlock to Sita, along with a proof that this

padlock or this public-key 𝑝𝑘 indeed belongs to Ram; it does not belong to a random person.

Now, what exactly is the proof used? Let us not go into the detail, but believe me, that there is

a proof associated with this lock, some kind of certificate which certifies that this bit string or

this padlock indeed belongs to the person Ram.

If the certificate verification fails, then basically, the sender will actually get a warning message

in the browser that, okay, we cannot verify the authenticity of this public-key 𝑝𝑘, you can

proceed at your own risk. But if the certificate is verified, then 𝑝𝑘 will be communicated to the

sender.

(Refer Slide Time: 27:11)

So, now, what sender has to do is the following: What she does is the following: She generates

a secret combination for a lock. So, she generates a lock; she has a lock with herself and there

is a key combination for opening it. That is her document. So, right now, she do not have any

specific plaintext to communicate to the receiver, because right now, we are doing the key

agreement.

So, what Sita is doing here is, she has now a padlock; not padlock; she has actually a lock,

which requires a key, both for opening as well as locking. This is different from your padlock.

For padlock, you need the key for opening, but for locking you do not require the key. But the

lock which Sita has, it requires a key, both for locking as well as opening. So, she has the lock

and the key corresponding to this lock.

What she does is the following: She keeps the key that is required for operating this lock inside

a box, and lock it using the padlock of Ram, namely the public-key; and communicate it to the

Ram. So, basically, you can imagine this entire process as if Sita is generating a random key

for symmetric-key encryption and encrypting it using Ram's public-key. That means, the key

for symmetric-key encryption is serving as the plaintext which Sita would like to encrypt using

Ram's public-key.

So, Sita right now do not have any specific plaintext. The only plaintext that Sita has is a

randomly generated key for a random lock that only she has right now. And that key she is

encrypting by treating it as a plaintext using Ram's public-key. Now, once Ram receives this

ciphertext or the encrypted key, since Ram has the decryption key for opening the padlock, he

can open it. And now, Ram will also have the same secret-key combination which is required

to operate this key. And this will ensure that key agreement has happened now. You can see

that.

(Refer Slide Time: 30:22)

So, in stage 1, the only secure communication which happens between the sender and the

receiver is basically to agree upon this secret-key combination, which is required to operate

this lock, nothing else. And that finishes your stage 1. Of course, there are other details also

involved as part of your SSL protocol, but I am just giving you a very simplifying abstraction.

(Refer Slide Time: 30:47)

Now, in stage 2, the actual secure communication starts. And now you can see that how

magically Sita and Ram have agreed upon this secret-key combination by actually performing

the communication over the public channel itself. And now, since we have ensured that there

is a secret-key combination established between the sender and the receiver or Sita and Ram,

they can go to stage 2.

And whatever plaintext Sita now wants to securely communicate to the receiver, she can start

encrypting it using the secret-key combination. Namely, she has to keep it in a document; keep

the documents inside the box; lock it using this key and communicate it to the receiver. Since

receiver also have the same secret-key combination, he can apply it and he can open the box to

get back the document. And now, he will also have the same lock;

(Refer Slide Time: 31:48)

Which he can now use to communicate back any message 𝑚′ if he has. So, now you can see

that it is now the same lock which is used for all the communication during the stage 2. Now,

different locks are not used. It is the same lock which is used every time Sita wants to

communicate to Ram or Ram wants to communicate to Sita, because both of them have now

the same secret-key combination magically established. So, that is how the real-world protocols

like SSL operates.

(Refer Slide Time: 32:22)

Now, there are 2 types of encryption schemes when it comes to the level of security that they

provide. So, loosely speaking, what is the level of security? Remember, the goal of encryption

schemes is to emulate a secure authenticated channel on top of a public channel. Now, this

entire communication should be secure against a third party who is often called as the

adversary, who wants to cause harm to the sender or the receiver.

Now, this adversary need not be a person, basically it could be a virus or it could be a kind of

algorithm which is trying to cause harm to the secure communication happening between the

sender and the receiver. Now, this adversary could also have some computing resources

requirements, because, finally, it also has to run some algorithm to find out what is the actual

communication happening between sender and receiver; it has to analyse the ciphertext and so

on.

So, depending upon the computing power of the adversary, we have 2 categories of encryption

schemes. The first category of encryption schemes, they are called as unconditionally secure

encryption schemes. They are called unconditionally secure because they give us security

guarantees, namely the privacy, authenticity and integrity guarantees, even if this adversary,

this third person power is unbounded.

That means, even if the third party or the adversary deploys all the computing resources of the

universe, still it cannot cause any harm to the secure communication happening between the

sender and the receiver. Whereas, the second category of encryption schemes which are called

as conditionally secure schemes, it gives us the security guarantees, namely the privacy

guarantees, authenticity guarantees and integrity guarantees, only if the attackers or the

adversary's computing resources are bounded.

So, of course, you might be saying that, why I will be going for conditionally secure schemes?

Because, if I have the option of deploying unconditionally secure schemes, I will deploy them,

because that provides me more security. It gives me security guarantees even against the more

powerful adversary. But there are some trade-offs associated. So, these unconditionally secure

schemes, it always have symmetric-key variant.

That means, by nature, they have to be symmetric-key encryption schemes. That means, the

same key will be used both for encryption and decryption; you cannot have a public-key

variant. And that is why the key agreement is a huge challenge while deploying this

unconditionally secure schemes. And worse, what you require here is the following: You need

that, for each instance of encryption, a fresh key needs to be used.

That means, every time sender wants to communicate a message to the receiver, she should

have a fresh key. As soon as she performs the encryption and communicate the message to the

receiver, she should throw off this key. And again, next time she wants to do a secure

communication, she has to generate a fresh key. By fresh key, I do not mean a key which is

content wise different from the previous key.

By fresh key, I mean a key which is generated independently of the previous key. It could be

the case that the fresh key contents is same as the previous key. That is fine. But it has to be

generated independently by some algorithm. That means, the probability that 𝑘′ is same as 𝑘,

could be non-zero. But from the viewpoint of the third party or the attacker, 𝑘 and 𝑘′ should be

different.

It could be that they are not different, but they are independent. And we need that all the keys

which are used by sender to communicate to the receiver, they should be magically

communicated beforehand to the receiver, because, then only the receiver can do the

decryption. So, that is why, even though you get a very strong security guarantees from

unconditionally secure schemes, you need a kind of a very stringent requirement, namely, fresh

keys for every message.

This is not the case for conditionally secure schemes. Because, for conditionally secure

schemes, you can use a single key for encrypting the entire session messages. And

conditionally secure schemes are available both in the symmetric as well as asymmetric-key

variant. So, all your public-key encryption schemes like RSA, El Gamal, they are secure only

when your adversary is computationally bounded. As soon as your adversary becomes

computationally unbounded, their security will be broken.

(Refer Slide Time: 37:36)

So, that roughly concludes the discussion regarding cryptography that we need fit for this

course. If you are interested to know more about the specific details, security properties of

encryption, decryption and other cryptographic primitives, you are referred to this NPTEL

course. And these are some wonderful textbooks to learn more about cryptography.

	Secure Computation - Part I
	Prof. Ashish Choudhury
	Department of Computer Science
	International Institute of Information Technology, Bangalore
	Module - 1
	Lecture - 6
	Recap of Basic Concepts from Cryptography

