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Hello everyone. Welcome to this lecture. The plan for this lecture is as follows: In this lecture, 

we will recap some of the basic facts about algebraic structures. Specifically, we will consider 

groups. We will discuss the definition of groups, the properties of groups, and we will see some 

examples of groups. Looking ahead, these concepts will be used when we will design protocols 

for secure multi-party computation.  

(Refer Slide Time: 01:02) 



 

So, let us begin with the definition of a group. Consider a set 𝐺 with some binary operation 

small o. And when I say binary operation, by that I mean it operates over 2 operands, and both 

the operands will be from your set 𝐺. So, the set 𝐺 along with this operation o will be called a 

group, if certain conditions are satisfied. So, let us see what those conditions are. Those 

conditions are often called group axioms.  

 

So, let us see those group axioms. So, the first group axiom is the closure property, which I 

denote by 𝐺1. You can imagine 𝐺1 to be property number 1. The closure property demands that 

you take any pair of elements 𝑎 and 𝑏 from the set; I stress - any pair of elements; so, that 

means, your 𝑎 could be same as 𝑏 as well, or your 𝑎 could be different from 𝑏.  

 

So, the closure property demands that if you take any pair of elements from the set 𝐺 and you 

perform the operation small ∘, treating the elements 𝑎 and 𝑏 as the operands, then the result 

should be an element of the set 𝐺 itself. That is why it is called closure property. Closure in the 

sense; imagine 𝐺 is a big circle which has several elements. And you take any 2 elements from 

this circle, 𝑎 and 𝑏, and you perform the operation 𝑎 ∘ 𝑏.  

 

You will obtain some element 𝑐 = 𝑎 ∘ 𝑏. That element 𝑐 should also lie within the circle itself; 

it should not go outside the set capital 𝐺. That is why the term closure property. And this should 

hold for every pair of elements 𝑎 and 𝑏 from the set capital 𝐺. That is a closure property.  
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The second property is the associativity property, which says the following: You take any 

triplet of elements 𝑎, 𝑏, 𝑐. Again, any possible triplet; that means, it could be the case that 

𝑎, 𝑏 and 𝑐 are all different; it could be the case that all of them are same; it could be the case 

that 𝑎 and 𝑏 are same, 𝑐 is different and so on. So, the associativity property demands that it 

does not matter which triplet of elements you choose from the set capital 𝐺.  

 

If you first perform the operation 𝑎 ∘ 𝑏, and then you take the result and apply the operation 

∘with 𝑐, then you get a same element which you obtain by first performing the operation 𝑏 ∘ 𝑐, 

and then, applying the operation ∘ with the result and the element 𝑎 as the operands. That 

means, it does not matter in order to perform the operation ∘ involving these triplets of 

elements, the result will be the same group element. So, if this property holds, then we say that 

associativity axiom is satisfied. So, that is a second requirement from a group.  
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The third axiom that should be satisfied is the presence of a special element which we call as 

the identity element. So, there should exist some special element; let us call it 𝑒; and that 

element should be a member of the set 𝐺 itself. And that element will be called as the identity 

element. So, what do I mean by the identity element? By identity element, I mean that; you 

take any element 𝑎 from the set 𝐺 and you perform the operation𝑎 ∘ 𝑒.  

 

You should get back the element 𝑎. So, that means, if your 𝐺 is {𝑎1, 𝑎2, . . , 𝑎𝑛}, and there is 

some special element 𝑒 there. What we demand is that 𝑒 should have the property that, if you 

perform the operation involving 𝑎1 and 𝑒, you should get back 𝑎1. If you perform the operation 

between 𝑎2 and 𝑒, you should get back 𝑎2. If you perform the operation between 𝑎𝑛 and 𝑒, you 

should get back the element 𝑎𝑛.  

 

And in fact, if you perform the operation involving 𝑒 and 𝑒, you should get back 𝑒, because 

this requirement is for every 𝑎 from the set G. So, even 𝑒 will also be considered as an element. 

If such a special element 𝑒 is present, then we say that it is the identity element. And the third 

group axiom demands that your set 𝐺 should have the identity element with respect to your 

operation ∘.  
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So, this element 𝑒 will be considered as the identity element with respect to operation ∘. And 

the fourth group axiom demands the presence of an inverse element for every element small a 

in your set 𝐺. So, what does it mean? The demand here is that, you take any element 𝑎 from 

the set 𝐺, corresponding to this element 𝑎, there should exist some element from the set 𝐺. Let 

us use the notation 𝑎−1 for that element.  

 

And the property of that element 𝑎−1 should be the following: If you perform 𝑎 ∘ 𝑎−1, you 

should get back the identity element 𝑒. If that is the case, then we say that 𝑎−1 is the inverse 

element for the element 𝑎 with respect to the operation ∘. So, if your set 𝐺 is such that operation 

∘ satisfies the closure property, associativity property, the existence of identity is guaranteed 

and the existence of inverse is guaranteed, then the set 𝐺 along with the operation ∘ will be 

considered as a group.  

 

Whereas, even if one of these 4 properties is violated, then 𝐺 is not be considered as a group. 

So, before I proceed further, few remarks here. The operation ∘ need not be commutative. That 

means, it is not necessary that the result of 𝑎 ∘ 𝑏 and the result of 𝑏 ∘ 𝑎 is the same group 

element. Of course, there will be some group element because of the closure property, but that 

does not mean that 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎, even though the associativity property is true.  

 

That is a first thing to note here. And a second important thing to note here is that this notation 

𝑎−1 is just a notation for a special element denoting the inverse of the element 𝑎. You should 

not consider it as 𝑎−1 in the numerical sense, namely, you should not consider 𝑎−1 to be same 



as  
1

𝑎
 . Because, at the first place, the element 𝑎 a need not be an integer value, it is just an 

abstract element from an abstract set 𝐺. It is just a representation.  
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So, now, let us see some examples of groups. We will start with the groups which all of us are 

familiar with, and then we will introduce some of the interesting class of groups which we will 

encounter in this course. So, all of us are familiar with the set of integers which I denote by 

this notation ℤ, and you consider the operation +. So, that means, I am considering my set 𝐺, 

the abstract set 𝐺 in the previous slide, to be the set of integers. And, I am considering the 

operation ∘ to be the plus operation.  

 

Now, let us see whether all the group axioms are satisfied with respect to this set of integers 

and the plus operation. So, the closure property is guaranteed, because, you take any 2 integers 

𝑎 and 𝑏, then their summation will also be an integer and will be a member of the set ℤ. The 

associative, the plus operation, namely the integer addition operation is associative. That 

means, it does not matter in what order you add 𝑎, 𝑏 and 𝑐, you will obtain the same result, 

same answer.  

 

The integer 0 will be the identity element, because, you add 0 to any element 𝑎, any integer 𝑎, 

you will get back the integer . And the integer −𝑎 will be the inverse element for the integer 

𝑎, because if you add −𝑎 to the integer 𝑎, you will get back the identity element which is 0. 

So, here, 𝑎−1 is nothing but −𝑎, as per our notation for inverse of 𝑎.  

 



So, now, if you are wondering that why I am considering the set of integers, why can’t I take 

the set of non-negative integers? By non-negative integers, I mean all the positive integers 

along with 0. So, that set is denoted by this notation. Now, let us consider this set ℤ+  and the 

operation to be the integer addition, and let us see whether all the 4 group axioms are satisfied 

or not.  

 

So, of course, closure property will be satisfied, because, you take any 2 positive integers, add 

them, you will again obtain a positive integer. Addition of integers is anyhow associative.  

So, my axiom 𝐺3 is also satisfied, because the integer 0 will be the identity element. But, the 

fourth requirement, namely, the fourth group axiom is not satisfied, because, if you take any 

positive integer, say 𝑎 = 2, then the inverse of a will be the integer −2 . But −2 does not 

belong to the set ℤ+ , because the set  ℤ+ is not allowed to include the negative integers. So, 

even though the inverse is there, the inverse is not present in the set ℤ+.  

 

Whereas, the requirement of the inverse is that, it should be a member of the set itself. So, that 

is why, the axiom number 𝐺4, the fourth group axiom is not satisfied, and that is why the set 

of non-negative integers with respect to the integer addition does not constitute a group.  
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So, now, let us see another very simple example of a group. So, consider the set of non-zero 

real numbers. So, the set of real numbers is denoted by this notation our capital ℝ, but I am 

excluding 0 from it. And my operation is now the multiplication operation, usual multiplication 

operation. And now, let us see whether all the group properties are satisfied. So, the closure is 



satisfied, because, you take any 2 non-zero real numbers, you multiply them, the result again 

will be a non-zero real number.  

 

The multiplication operation is anyhow associative. So, it does not matter in what order you 

multiply three non-zero real numbers 𝑎, 𝑏, 𝑐, you will get the same result. The real number 1, 

which is a non-zero real number, will be the identity element for every non-zero real number. 

Because, you take any non-zero real number 𝑎, and multiply it with the element 1, you will get 

back the element 𝑎. And what will be the inverse element?  

 

So, if you consider a real number 𝑎, its inverse will be 
1

𝑎
, because, when you multiply 

1

𝑎
 with a, 

you will get back the identity element which is 1. And the element 
1

𝑎
 is well-defined. Why it is 

well-defined? Because, since 𝑎 is a non-zero real number, 𝑎 cannot take the value 0. And that 

is why 
1

𝑎
 is well-defined. And 

1

𝑎
 is also going to be a non-zero real number.  

 

And it will be a member of your set ℝ - {0} . So, in this case, the abstract set 𝐺 is the set of real 

numbers excluding 0. And your abstract operation small ∘ is basically the multiplication 

operation. And we have shown that all the 4 properties are satisfied. That is why it constitutes 

a group. So, now, you might be wondering what happens if I include 0 as well in this. That 

means, if I consider the full set of real numbers and my operation is multiplication, will it 

constitute a group?  

 

Well, the answer is no, because the inverse element is not defined for the element 0. Because, 

the inverse will be 
1

0
, and 

1

0
 is not well-defined, it is not a member of the set of real numbers. 

So, that is why we are excluding 0 here, and then only we can prove the group axioms. So, 

now, let us discuss why we have considered the set of real numbers, why not the set of non-

zero integers.  

 

Can we say that the set of non-zero integers constitute a group with respect to the multiplication 

operation? So, let us see which properties are satisfied. So, the closure will be satisfied, 

because, you take any 2 non-zero integers, multiply them, the result will be again a non-zero 

integer. Multiplication operation is anyhow associative. The integer 1 will be a member of this 



set and will be the identity element, but the problem is that the inverse for an integer is not 

well-defined.  

 

Say for example, if 𝑎 = 2, then the inverse of 𝑎 will be 
1

2
, but 

1

2
 is not a member of the set of 

non-zero integers, it belongs to the set of real numbers. So, that is why axiom 4 is not satisfied. 

And hence, the set of non-zero integers do not satisfy the group axioms. So, we have seen till 

now, examples of groups which we are familiar with, namely the set of integers, real numbers 

and so on.  
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Now, we will introduce 2 interesting groups, which we will encounter later when we design 

MPC protocols. So, the first group I define here is the set ℤ𝑁. And what is the set ℤ𝑁? It is a 

collection of integers 0 to 𝑁 − 1. And basically, you can interpret this set ℤ𝑁 as the set of 

integers modulo N. What does that mean? You take any integer. So, you have the set of 

integers.  

 

We have the number line 0, 1, 2; then in the positive direction you go towards ∞, and in the 

negative direction you go towards −∞. This is your set of integers ℤ. You take any integer and 

divide it by the number 𝑁, you will obtain a remainder. And the remainder will be in the range 

{0, . . , 𝑁 − 1}. You divide any integer, the remainder will be in the range {0, … , 𝑁 − 1}.  

 

So, that is why you can imagine that set ℤ𝑁 is basically the entire infinite set of integers reduced 

modulo 𝑁. So, basically, I am collapsing an infinite set to a finite set by taking modulus with 



respect to 𝑁. So, that is the interpretation of your set ℤ𝑁 here. And I am going to define a 

special plus operation here. So, this is called addition, but modulo 𝑁. And the notation that we 

use for this special plus operation is +𝑁.  

 

So, you have the usual plus operation, and then, in the subscript you have the modulus 𝑁. And 

how this addition operation is performed? So, if you have 2 numbers 𝑎 and 𝑏 in this set 

{0, . . 𝑁 − 1}. And if you want to obtain the result of +𝑁, what you do is, you first add the 2 

numbers 𝑎 and 𝑏, as per the usual addition operation, and then you take the modulo 𝑁. That 

will be the overall result of (𝑎 + 𝑏)%𝑁.  

 

That is my definition of addition modulo 𝑁. Now, my claim is that if I consider my abstract 𝐺 

to be is ℤ𝑁, and if I consider the abstract operation to be this operation of +𝑁, then all the group 

axioms are satisfied. Let us see. So, you take any pair of elements 𝑎, 𝑏 from the set ℤ𝑁, namely 

𝑎 is some element in the range 0 to 𝑁 − 1, 𝑏 is also an element in the range 0 to 𝑁 − 1.  

 

And then, if you perform the addition of these 2 elements (𝑎 + 𝑏)%𝑁, whatever is the result 

of 𝑎 + 𝑏, as soon as you perform modulo 𝑁, the remainder will be in the range 0 to 𝑁 − 1. Let 

that remainder be 𝑟. And the remainder will be in the range 0 to 𝑁 − 1. Hence it will be an 

element of the set  ℤ𝑁,. So, that is why the closure property is satisfied. Now, let us see whether 

the associative property is satisfied or not.  

 

And it turns out that, it does not matter what your elements 𝑎, 𝑏, 𝑐 are; if you pick them from 

the set ℤ𝑁, then it does not matter in what order you perform the operation of addition modulo 

𝑁, the final result will be the same as (𝑎 + 𝑏 + 𝑐)%𝑁. You can verify that very easily. The 

integer 0 which is a member of the set ℤ𝑁; will be the identity element.  

 

Because, if you take any element 𝑎 in the range 0 to 𝑁 − 1 and if you do 𝑎 + 0, basically you 

are still having the element 𝑎 only. And now, if you take 𝑎%𝑁, the result will be same as 𝑎. 

So, that is why the element 0 constitutes the identity element here. Now, what about the 

inverse?  
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Imagine that your element 𝑎 is some element in the range 0 to 𝑁 − 1. Now, I consider an 

element −𝑎, and this is not a usual −𝑎; −𝑎 here is defined to be the element 𝑁 − 𝑎. That is the 

interpretation of this notation. When I say equal to, and on top of that define I write, that means, 

I am now defining a new way or new interpretation for −𝑎.  

 

My −𝑎 is now interpreted as if the difference of the modulus and the element 𝑎. And if your 

element 𝑎 belongs to 0 to 𝑁 − 1, then it is easy to see that 𝑁 − 𝑎 will also be an element of 0 

to 𝑁 − 1. And what can you say about the result of addition modulo 𝑁 involving 𝑎 and 𝑁 − 𝑎? 

Well, it will be same as 𝑎 + 𝑁 − 𝑎; you add them and then you take a mod as per our definition 

of +𝑁.  

 

But 𝑎 + 𝑁 − 𝑎 at the first place will give you 𝑁. And now, 𝑁%𝑁 will give you the element 0, 

which is your identity element. So, that is why the inverse element also exist, and the inverse 

element will be 𝑁 − 𝑎. So, now you can see that this is a special type of addition operation 

defined over a special set ℤ𝑁, and it satisfies all your group axioms.  
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Now, let us define a special form of multiplication over a special set and we will prove that, 

that constitutes a group as well. And this is a very interesting group, which we will encounter 

later. So, earlier, we had defined a set ℤ𝑁, which consists of all the remainders that you can 

obtain by dividing any integer by the modulus N, namely it has the elements 0 to 𝑁 − 1. Now, 

ℤ𝑁
∗  is the collection of all the elements from ℤ𝑁, which are co-prime to 𝑁.  

 

So, 𝐺𝐶𝐷(𝑎, 𝑁) = 1 means that 𝑎 is co-prime to 𝑁. And 𝐺𝐶𝐷 means the greatest common 

divisor. So, co-prime means, there is no common integer other than 1 which divides 𝑎 and 𝑁; 

that is the greatest common divisor here. So, for instance, 3 and 6 are not co-prime, because 

their GCD is 3. 3 divides 3 as well as 6, so, and that is not equal to 1; so, their GCD is more 

than 1, it is not 1; that is why they are not co-prime.  

 

But if I consider say 4, 7 are co-prime, because their GCD, namely the greatest common divisor 

is 1. So, what is my definition of ℤ𝑁
∗ ? So, ℤ𝑁   had the elements 0 to 𝑁 − 1. Among all these 

elements, I am focusing on only those elements which are co-prime to my modulus. That 

means, I am considering now; so, if this is your ℤ𝑁, I am focusing on a subset of ℤ, which I am 

calling as ℤ𝑁
∗ , which basically consists of only those elements from ℤ𝑁 which are co-prime to 

my modulus 𝑁.  
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And now, analogous to addition modulo 𝑁, I define the operation of multiplication modulo 𝑁. 

And how it is defined? So, first of all, the notation is this. So, we use ⋅ typically for 

multiplication, but now, we are going to do multiplication with respect to a modulus namely 

capital 𝑁, so, in the subscript we have that modulus and the operation is denoted as ⋅𝑁. And if 

you have 2 elements 𝑎 and 𝑏 in the set ℤ𝑁
∗ , then the result of multiplication modulo 𝑁 of 𝑎 and 

𝑏 will be computed as follows:  

 

You first multiply 𝑎 and 𝑏 as it is, as per the integer multiplication, and then you take mod with 

respect to the modulus 𝑁. That will be the result of 𝑎 ⋅𝑁 𝑏. So, now, we can prove the following. 

If I consider my set 𝐺, the abstract set 𝐺 to be ℤ𝑁
∗ , and my abstract operation ∘ to be the 

operation of ⋅𝑁, then all the group axioms are satisfied. So, let us prove that.  

 

Well, let us prove first the closure property. So, imagine you take a pair of arbitrary elements 

𝑎, 𝑏 from ℤ𝑁
∗ . I have to show that, if I perform 𝑎 ⋅𝑁 𝑏, then again I obtain an element from ℤ𝑁

∗  

itself. So, since 𝑎 is an element ofℤ𝑁
∗ , that means 𝑎 is co-prime to 𝑁. That means, their GCD 

is 1. And similarly, 𝑏 is an element of ℤ𝑁
∗ . That means, 𝑏 is co-prime to 𝑁, their GCD is 1.  

 

Now, I have to show the following: I have to show 2 things. I have to show that, when I perform, 

when I perform 𝑎 ⋅𝑁 𝑏, then I obtain something; it should be of course in the range {0,…,𝑁 −

1}, plus it should be co-prime to your modulus 𝑁. So, 2 things I have to prove. So, the first 

thing is easy to prove. If I multiply 𝑎 and 𝑏 and then take modulo 𝑁, of course, the remainder 

𝑟 will be a value in the range {0,…,𝑁 − 1},.  



 

But I also need to prove that this remainder 𝑟, which is the result of  𝑎 ⋅𝑁 𝑏 is co-prime to your 

modulus 𝑁. Then only I can show that 𝑟 is actually a member of ℤ𝑁
∗ , because that is my 

definition of ℤ𝑁
∗ . How do I prove that 𝑟 is co-prime to 𝑁? Well, that is very simple. So, I can 

write 𝑟 to be the difference of 𝑎 ⋅ 𝑏 and some multiple of your modulus 𝑁.  

 

Why so? What is 𝑟? 𝑟 is the result or 𝑟 is the remainder which you obtain by dividing 𝑎 ⋅ 𝑏 by 

the modulus 𝑁. That means, it is the leftover portion. That means, I can say that 𝑎 ⋅ 𝑏 = 𝐾𝑁 +

𝑟 by your division property. If 𝑎 ⋅ 𝑏 is completely divisible by 𝑁, then the remainder 𝑟 will be 

0. But if 𝑎 ⋅ 𝑏 is not completely divisible by 𝑁, then there will be a leftover remainder, that is 

your remainder 𝑟, and 𝐾 is basically your quotient.  

 

So, that is why 𝐾 is some integer; it could be 0; it could be 1; it could be some integer. And 

since 𝐺𝐶𝐷(𝑎, 𝑁) = 1 ; that means, there is no common divisor of 𝑎 and 𝑁 apart from 1; and 

since𝐺𝐶𝐷(𝑏, 𝑁) = 1, because both 𝑎 and 𝑏 are co-prime to 𝑁; then, I can conclude that 𝑎 ⋅ 𝑏 is 

also co-prime to 𝑁. Why? Because, if 𝐺𝐶𝐷(𝑎 ⋅ 𝑏, 𝑁) is some 𝑥 which is not equal to 1, then it 

implies that either 𝑥 divides both 𝑎 and 𝑁 or 𝑥 divides both 𝑏 and 𝑁. 

 

But if 𝑥 divides both 𝑎 and 𝑁, that means the 𝐺𝐶𝐷(𝑎, 𝑁) is not 1 but rather 𝑥; and 𝑥 is not 

equal to 1. But that is a contradiction, because 𝐺𝐶𝐷(𝑎, 𝑁) is 1. In the same way, 𝑥 cannot 

divide both 𝑏 and 𝑁, because if that would have been the case, then 𝐺𝐶𝐷(𝑏, 𝑁)  would have 

been 𝑥 but not 1. But that is again a contradiction to this fact. So, that is why, since both 𝑎 and 

𝑏 are co-prime to 𝑁, I can say that their product is also co-prime to 𝑁.  
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And by the divisibility property, I get that 𝑟 will be the difference of 𝑎 ⋅ 𝑏 and some multiple 

of 𝑁. So, now, combining these 2 facts, I can conclude that the𝐺𝐶𝐷(𝑟, 𝑁) = 1. That is very 

simple. So, that shows that 𝑟 is a member of ℤ𝑁
∗  as well and 𝑟 is the result of 𝑎 ⋅𝑁 𝑏 .  
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So, the closure property is satisfied. Now, let us see associativity property is satisfied or not. 

So, if you take any triplet of elements 𝑎, 𝑏, 𝑐, all of which are individually co-prime to 𝑁 and 

multiply them together, and you perform the multiplication modulo 𝑁 operation, I have 

involving 2 elements at a time, then it does not matter in what order you perform the 

multiplication modulo 𝑁 operation, the result will be the same as if you do 𝑎 ⋅ 𝑏 ⋅ 𝑐 and then 

you take modulo 𝑁.  

 



So, of course the result will be an element in the range{0, … , 𝑁 − 1}; and at the same time, it 

will be co-prime to 𝑁. Namely, if 𝑟 is the remainder obtained by dividing 𝑎 ⋅ 𝑏 ⋅ 𝑐 by 𝑁, then 

𝑟 has to be co-prime to 𝑁. Because, if 𝑟 is not co-prime to 𝑁, then you get a contradiction that 

either 𝑎 is not co-prime to 𝑁, or 𝑏 is not co-prime to 𝑁 or 𝑐 is not co-prime to 𝑁, which is not 

true. The element 1 will be a member of ℤ𝑁
∗ , because𝐺𝐶𝐷(1, 𝑁) = 1.  

 

This implies the element 1 belongs to ℤ𝑁
∗ . And now, you perform the multiplication modulo 𝑁 

involving any element 𝑎 from ℤ𝑁
∗ ,  and the element 1. The result will be the element 𝑎 itself. 

And now, what about the inverse. So, if you are given an element 𝑎 from ℤ𝑁
∗ ; that means, 

the𝐺𝐶𝐷(𝑎, 𝑁) = 1; then there is the wonderful result from number theory which says that if 𝑎 

is relatively prime or co-prime to your modulus 𝑁, then there always exist another integer 𝑏 

also from your set ℤ𝑁
∗ , such that the result of  𝑎 ⋅𝑁 𝑏 will give you the identity element namely 

1.  

 

So, the element 𝑏 will be considered as the multiplicative inverse 𝑎 modulo 𝑁. And it is easy 

to see that if 𝑏 is the multiplicative inverse of 𝑎 modulo 𝑁, then 𝑎 will be considered as the 

multiplicative inverse of 𝑏 modulo N. That means, they are inverse of each other. So, that 

means, 𝑎−1 = 𝑏, and𝑏−1 = 𝑎; because of the fact that when you multiply 𝑎 and 𝑏 and take 

modulo 𝑁, you get back the identity element 1.  

(Refer Slide Time: 37:35) 

 

So, now, let us see some concrete examples of the 2 special groups ℤ𝑁  and ℤ𝑁
∗  that we have 

encountered. So, here, let us see first 𝑁 = 6; and with respect to the addition modulo 6 



operation. So, I have drawn a table here. Along the columns, you have the elements of ℤ6, and 

along the rows, you have the elements of ℤ6. So, you can imagine that along the columns, you 

have the candidate values of 𝑎; along the rows, you have the candidate values of 𝑏; and then, 

the various entries will denote the result of performing𝑎+6𝑏.  

 

So, for instance, if I take 0 and 0, add them and take modulo 6, the result will be 0. If I take 0 

and 1 and then add them and take modulo 6, I will obtain 1 and so on. In the same way, now, 

if I take the element 1 and add it with 0, I will obtain 1, and 1 modulo 6 will be 1 and so on. 

So, this entry, let us verify. So, if I add 1 to 5, and then if my operation is modulo 6, this will 

be 6 modulo 6. And 6 modular 6 is 0. So, that is why we get the result 0 here.  

 

In the same way, the third row will be this; fourth row will be this; fifth row will be this; sixth 

row will be this. So now you can see that it does not matter what is the value of 𝑎, what is the 

value of 𝑏, the result is always an element of the set ℤ6. Remember, my set ℤ6 will have the 

elements 0 to 5. Nowhere we obtained an element which is outside the set 0 to 5. The 

associativity property is always satisfied. The element 0 is the identity element.  

 

Because, you add 0 with 0, you get 0; you add element 0 and 1, obtain the element 1; you add 

0 and 2, you obtain 2; you add 0 and 3, you obtain 3; you add 0 and 4, you obtain 4; you add 0 

and 5, you obtain 5. So, that means, if you want to find out the identity, just focus on the row 

involving 0. And if you want to find out the inverse of various elements, then you can verify 

here that the inverse of 0 is 0; the inverse of element 1 is element 5, because 5 + 1 will be 6.  

 

So, basically, 1 inverse will be considered as -1, and as per our definition of -1, it will be 6 - 1, 

which is 5. And indeed, if you add 5 to 1 and take modulo 6, you will obtain the identity element 

namely 0. In the same way, the inverse of element 2 will be element 4. Because, 2 inverse is 

basically -2 in the set ℤ6, and -2 is nothing but 6 - 2, and 6 - 2 is 4 and so on.  

(Refer Slide Time: 41:38) 



 

Now, let us take the example of ℤ𝑁
∗  and I take here 𝑁 = 7. So, your ℤ7 will have the elements 

0 up to 6. Now, ℤ7
∗  will have all those elements from ℤ7 which are co-prime to 7. So, it turns 

out that 0 is not co-prime to 7. Because, if I take GCD of 0 and 7, then it turns out to be 7. That  

is the largest number which divides both 0 as well as 7, and that is not 1. So, that is why 0 will 

not be included in ℤ7
∗ .  

 

But if you take the remaining elements, all of them are going to be co-prime to your modulus 

7, because 7 is a prime number. And that is why, ℤ7
∗  will have elements 1, 2, 3, 4, 5, 6. So, 

again, I have done the same thing. Along the columns, I have denoted the candidate values of 

𝑎; along the rows, I have denoted the candidate values of 𝑏. Well, you can interpret it other 

way around.  

 

You can imagine that along the rows, you have the candidate 𝑎's; and the columns, you have 

the candidate 𝑏's. And now, let us see the result of performing 𝑎 ⋅7b. So, 1 multiplied with any 

number; after performing modulo 7 will give back the same number. So, the row under 𝑎 is not 

interesting. Let us consider the row under 2. See, if you perform 2 ⋅7 1, that will be same as 

2 % 7, and hence 2.  

 

If you multiply 2 with 2 and take modulo 7, that will be 4 modulo 7, which is 4. But now, if 

you perform multiplication of 2 and 3 modulo 7, that will be 6 modulo 7. That will be 6. But 

as soon as you perform 2 multiplication 4 modulo 7, that will be 8 modulo 7. And 8 modulo 7 

is 1. So, you can see now. And similarly, 2 multiplied with 5 will be 10. 10 modulo 7 will be 3 

and so on. The same way, you can find out the remaining rows.  



You can see the closure property is satisfied, because you always obtain a result which lies 

within the set 1 to 6. The integer 1 will be the identity element.  

(Refer Slide Time: 44:47) 

 

And the inverse of 1 will be 1; inverse of 2 will be 4. Because, when you multiply 4 with 2 and 

then take modulo 7, you get the identity element 1. So, the inverse of 2 is 4. And now, let us 

check the inverse of 4. The inverse of 4 will be 2. Because, this particular entry is the identity 

element; so, under the column 4, under the row 2, you obtain the element 1; that is why the 

inverse of 4 is 2.  

 

So, that is why, what I said earlier is correct. You can verify that. If 𝑏 is the multiplicative 

inverse of 𝑎, then 𝑎 will be the multiplicative inverse of 𝑏 and so on.  

(Refer Slide Time: 45:38) 

 



So, what will be the cardinality of the group ℤ𝑝
∗ , if 𝑝 is a prime number? So, as we have 

demonstrated here, ℤ𝑝
∗  will have all the elements from ℤ𝑝 except the element 0, because the 

GCD of 0 and 𝑝 will not be equal to 1, because it is 𝑝. Other than that, all other elements in the 

set ℤ𝑝 will be co-prime to your 𝑝.  

(Refer Slide Time: 46:05) 

 

So, with that, I end today's lecture. These are the references used for discussing today's 

concepts. Of course, they are very basic facts about groups. You can find them in any online 

resource. Thank you. 


	Secure Computation - Part I
	Prof. Ashish Choudhury
	Department of Computer Science
	International Institute of Information Technology, Bangalore
	Module - 1
	Lecture - 4
	Recap of Basic Concepts from Abstract Algebra

