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Lecture –64
Joint Probability Distributions (Part - 15)

The joint normal distribution the joint normal is the most commonly used joint probability

description in almost every branch of applied prop stats and one of the main reasons of its

popularity is the fact that this joint density is completely specified by the only the first two

moments the mean vector and the covariance matrix. And it is also not a coincidence that if we

have real observed data on a bunch of dependent random variables.

It is the first two moments the means the variances and the correlation coefficients are the

statistics that we can most reliably get from the data. So, this is the only named joint distribution

that we will study in this lecture. Other joint distributions in many cases can be derived from or

be approximated by the joint normal. So, let us start with the bivariate normal.

(Refer Slide Time: 01:40)

Let us recall that the random variable X is said to have a normal distribution with two parameters

the mean mu and the variance sigma squared if its density function is given as you see on the

screen and this reason that we have Q1 in the exponent because we are going to generalize that



the form of Q1 we all remember it is the inverse of the variance pre-multiplied and

post-multiplied by the deviation of the value of the of the normal random variable from its mean.

And you can also relate the arbitrary normal density with the standard normal density function

which is phi. Now in a parallel manner we can define the bivariate terminal where we introduce

Q2. So, x1 and x2 have the single they have the non-singular bivariate normal distribution if their

joint density looks like what you see on the screen and Q 2 is written parallelly as we did for Q1

is the inverse of the covariance matrix pre-multiplied and post-multiplied by x minus the mean

vector.

And note also that there is the square root of the determinant of the covariance matrix in the

denominator. So, we can expand this in terms of the 5 parameters that govern the density

function the two means the two standard deviations and the correlation coefficient. In standard

form the means are 0 the variances are 1 and it is governed by the by the single parameter rho.

The bivariate normal distribution is said to be singular if if the determinant of the covariance

matrix is 0 or in other words if the correlation coefficient is either plus or minus 1.
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Let us just look at the conditional and marginal distributions from the bivariate normal. So, if we



have the bivariate normal N 2 given by it is the mean vector and the covariance matrix. Then the

marginal distribution of either one X 1 or X 2 and regardless of the correlation coefficient

between them is univariate not. So, f x 1 is normal mu 1 sigma 1 squared and likewise f x 2 is

normal mu 2 sigma 2 squared.

Unfortunately and here I use the bouncing animation the converse is not necessarily true. So, if

you have two marginal normal’s if X 1 and X 2 are normal and variables and they have a certain

degree of dependence between them it is not necessary that their joint density function is going

to be bivariate normal. And there are several quite famous examples of that and they can be

looked up from standard text.

And it is it is quite straightforward to show that the from the bivariate normal we get the

marginal density as the normal if we just integrate out one of the two random variables. So, here

we look at the marginal of X 1 and we integrate the joint density in terms of X 2 and if we do the

right substitutions and if we go through the steps then we are going to end up with the normal

density function for X 1.

And here we started with the standard bivariate normal and we ended with the standard

univariate number the same logic can be taken for the conditional density function. So, if x is

bivariate normal we already know that the marginal density of either one is univariate normal.

So, if x is by weight normal and we fix the value of say x 2 then the conditional density of x 1 is

again normal.

And that can simply be achieved by dividing the joint normal expression by the by the marginal

density of x t evaluated at the particular value b. If we go through the steps it is it is interesting to

see that the conditional density of x 1 is normal with a mean that depends on b the particular

value that X 2 has taken and a variance that depends on the correlation coefficient it does not

depend on b and it is also to be noted that that 1 - rho squared the conditional variance is less

than the original variance of one.



And if we generalize this for any bivariate normal where say X 2 takes on the value little x 2 then

the conditional density of X 1 is normal with the conditional mean which is given in terms of the

original mean plus a correction factor which depends both on the deviation of X 2 from its own

mean and the correlation coefficient between the two random variables. The conditional variance

depends on the original variance and the correlation coefficient.

And it is easy to see that the conditional variance is less than the original variance and it does not

depend on what particular value the other one X 2 takes.
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Now let us move on to the multivariate normal distribution generalizing what we saw for the

bivariate normal. So, we have the mean vector mu the covariance matrix V and the

n-dimensional random variable X has the multivariate normal distribution the non-singular

multiplied normal distribution. If the covariance matrix is positive definite and the joint PDF is

of the form as we have seen before.

So, here we have Q n V inverse is multiplied pre and post multiplied by x minus mean vector.

And note that we have the determinant square root of the determinant in the denominator and 2

pi raised to the power of n over 2. And it is often symbolically written as N subscript little n a



very important result is that the normal family is closed under linear combination. So, if I start

with this random vector x and combine them in with the help of coefficients C and add another b

vector as you see here.

The new random vector that we get y which in general is m dimensional is also not and with the

mean vector as you see on the screen and the covariance matrix as also you see on the screen. So

the mean of mu is multiplied with c and that b vector is added to obtain the mean of y and the

covariance matrix of x is pre-multiplied and post-multiplied by c. So, in particular and this is

very useful for the purposes of Monte Carlo simulations which we will see soon.

Is if we start with IID standard normal’s. So, independent and identically distributed standard

normal’s which means that each of the sets z 1 up to z n has a zero mean and unit standard

deviation and no correlation between any pair. So, the variance, so, the covariance matrix of the

of the z s is the identity matrix. So, we can multiply the z's with the the c matrix the square

metric c and add to that any vector mu then what we get is an n dimensional normal y whose

mean vector is that vector that you added and whose covariance matrix is C C transpose.

So, this actually points to how we can generate dependent normal’s from independent standard

normal’s when we do Monte Carlo simulations and we will see that. So, let us complete this

discussion with the conditional marginal’s as we did for the bivariate case. So, let us let us

partition the x vector the n-dimensional x-vector which is multivariate normal into X 1 and X 2

of dimensions k and n - k respectively.

And then the mean vector and the covariance matrix is also partitioned in a similar manner. So,

you have mu 1 and mu 2 and V 11 V 22 in the diagonal and we want to invert 2 1 in the of

diagonal locations. So, if we partition it that way then each of these partitions X 1 and X 2 are

individually jointly normal. So, x1 is nk and x2 is n minus k with the mean vector mu 1 and mu 2

respectively and the covariance matrix V 11 and V 2.



Now X 1 and X 2 these two partitions would be independent of each other if and only if V 1 to

all the elements are zero. The conditional distribution of X 1 given X 2 would again be

k-dimensional joint normal and as we saw in the bivariate case the conditional mean vector is the

original mean vector plus a correction term which depends on how far X 2 is from its mean and

conditional covariance matrix which is the original covariance matrix v11 and corrected by a

term that you see on the screen. In the next few slides we are going to look up we are going to

look at some examples.


