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Joint moments, when discussing single random variables we defined the expectation of a

function g of the random variable X as the; weighted sum or the weighted integral of the function

with respect to the mass function of the density function as appropriate. So, we can extend the

same idea when we have a function of n jointly distributed random variables g as you see on the

screen. So, it is the n-dimensional integration if the X's were discrete then it would be the

appropriate sum.

Now how we define g gives us some well-known expectations and let us start with two random

variables the bivariate random variable X and Y. And let us say that we define g as the product of

x and y. So, this product moment E of X times Y is what you see on the screen it is the

integration of x, y with respect to the joint density function or if x and y were discrete double

sum. You could also define g as a product of the deviations of x from its mean and y from its

mean and that would be given as the integral as you see.



And which also happens to be the expectation of the product minus the product of the

expectation. So, that is the covariance of x and y and if x and y were discrete then we would

replace the integrals with sums. Now if this way of defining moments seems familiar to you it is

no surprise because we have done this in mechanics when finding properties of sections various

area moments. So here x and y are the distances either from the origin or from the centroid and

the mass density is now replaced by the probability density.

So, there is a lot of parallel here with mechanics. Now we could continue defining g in other

ways and here is the way we would define the joint characteristic function of the n random

variables we could recover the moments if say for example we have x 1 and x 2. So, the

expectation of x 1 x 2 would be the second derivative of the joint characteristic function

evaluated at 0, 0. Likewise we could define the moment generating function by an appropriate

function g as you see in terms of s 1 s 2 up to s n.

And we could like we did for the characteristic function we could take the second derivative of g

at the origin and we could recover the expectation of x 1 and x 2. Let us move on now to

conditional moments.

(Refer Slide Time: 03:55)

So, suppose we have the function g of X as we discussed in the previous slide and now we want

to condition the whole thing on an event a and find the conditional expectation of that function g



of X. So, just like we did when discussing single random variables we would take the weighted

sum or the weighted integral of g with respect to the conditional mass function or the conditional

density function defined when A is given.

Now there are various ways in which we could define that event a and the function g. So, the

event a could be defined on the random variable x itself and we did something like that when we

talked about proof loading. So, the random variable was restricted on the on the left it was

greater than or equal to the proof load the event a could also be given in terms of another random

variable so, which is what is more relevant here because we are discussing joint random

variables.

So, the event a could be the other end of variable y less than a certain constant or equal to a

certain value and the function g could be x itself it could be x minus mean of x whole square. So,

I think you understand where we are going with this and so, the conditional mean of x given that

y has attained a y is fixed at a certain value is the same approach fixing y. So, the conditional

mass of X given Y of the conditional density of x given y and performing the sum of the integral

as appropriate we could again as I said define the condition movement a in terms of x itself.

So, we would get the conditional mean in terms of the ratio that you see at the end of that

column. We again we have looked at this in the case of something similar in the case of proof

loading. Later on when we are going to look at the mean residual life of the time to failure a

random variable we would define things similarly. Now given the conditional mean we could

recover the unconditional mean provided we have enough information.

So, if we have the conditional mean of X given Y is fixed at a particular value and then if we

know the mass function or density function of y we could recover the mean of x the

unconditional v of x.
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Now let us move on to x minus mean squared. So, we are trying to go towards variance. So, the

conditional variance of X given again a certain value of Y is defined as you see as the

expectation on the first equation now for continuous x that is how we would get it as you see on

the screen for discrete x this is how we would get it. It should be straightforward except it is

important to remember that not only is the density function of the mass function conditional on

the particular value of y but so, is the mean the mean about which you are taking the deviation.

So, it is x - mu of X given Y. So, that is also the same conditional mean that we have to use. Now

just like we got the unconditional mean back given the conditional mean of x can we get it for in

case of the variance? As well yes we can. So, the variance of X can be obtained in terms of the

conditional variance of X given Y and the conditional mean of X given Y. But you see there are

two terms on the right.

So, the first is the expectation of the conditional variance and the second is the variance of the

conditional expectation. So, which means that you have to remove the conditioning on y the

proof is there in any standard textbook like the book by Ross, we have mentioned before. But

before you look it up it would be quite interesting and to try to solve it. So, that would be an

exercise that you could think of.


