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The normal distribution it is seemingly everywhere and that is because of the central limit

theorem. So, loosely speaking the central limit theorem states that if you add a large number of

random variables without a single dominant component among them and without significant

dependence among them then that sum would approach the normal distribution regardless of the

individual distribution.

So, that makes the central limit theorem very powerful. And it is also a very forgiving theorem it

applies in many cases but one should be careful not to force in it into situations where it clearly

does not apply. So, formally speaking the Lindbergh fellow version of CLT states that if you take

the sum of n independent random variables not necessarily identically distributed with respect to

distributions as you see the sequence F k the means the sequence mu k and the variances sigma

square k.



And when you centralize the sum which means you take the means out and you normalize with

the variance of the sum then that quantity approaches the normal distribution the standard normal

distribution with mean 0 and variance 1. And as we will see later this convergence is in

distribution. Now obviously it requires some conditions. So, this statement of the central limit

theorem is satisfied.

As long as Lindbergh's condition is satisfied which you see on the screen which basically says

that as you keep adding terms the probability of finding the probability mass further and further

away from the mean is less and less likely for any of these random variables. And a sufficient

condition for Lindbergh's condition is the Leoponov's condition and that is actually in many

cases easier to verify.

If you want to see the formal proofs refer to the excellent texts the book by the bible by Feller

and the book by Resnick that I have been referring to in these lectures.

Let us just in the next slide look at just one illustration of how quickly the central limit theorem

kicks in.
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So, what you see here is on the on the top left corner you see the exponential random variable



about 10 000 simulations of that and you can clearly see the exponential nature its mean is one

and. Now if you just add two of these. So, the next figure on the right at the n equals 2 that is the

distribution the histogram of the sum of these two independent exponentials with unit mean and

you can see that the peak of the exponential has already been blunted.

So, that is just when you add two if you add five of them the exponential nature is almost gone

and you can see that it is trying to reach that nice middle peak with tails on both sides. And if

you just add 10 of them it does not have to be large in the literal sense even if you add 10 of them

these independent exponentials you get a sum which looks clearer and clearer to have the nice

bell-shaped Gaussian form.
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So the standard normal density function and the standard normal distribution functions are here

on the screen and it is basically the error function and if you integrate it the area under it is 1 the

mean is 0 and the variance is 1. So, that is the standard normal random variable. One of the

important properties which comes from the symmetry of the distribution is the area to the right of

z 1 is identical to the area to the left of negative z 1.

And this is used very conveniently when we try to find the normal distribution function

evaluated at say a negative number. So, that is what you see on the top right figure that if phi of z



is p then z is either phi inverse of p or negative phi inverse of 1 - p. Now one of the most

powerful properties of the normal distribution are that the family is closed under linear

transformation. So, if x is normal. So, is a x + b.

So, if I transform the standard normal with the help of mu and sigma that you see on the screen

then I get a normal random variable whose mean is mu and standard deviation is sigma. So, that

is actually what is used when we try to find the CDF of any arbitrary random variable because

we can go back to the standard normal CDF.


