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It is clear by now that Monte Carlo simulation requires an abundant supply of IID random

numbers. We did discuss this the various methods of generating random numbers earlier in this

course in part A and it was quite clear that true random number generators those that use

physical sources are not really appropriate for our purpose in science and engineering and

structural reliability that we are looking at now and we need pseudo-random number generators.

Generators that run on a computer they produce a sequence of IID uniform deviates standard

uniform deviates as the output of a very precise and deterministic computer algorithm. But very

importantly this sequence has all the appearance of a true random number sequence. So

properties of a good random number generator are quite a few and the ones that we are

particularly interested in would be of course accuracy the ones that are highlighted in bold a long

period which we have discussed.



But it means machine independence and repeatability basically a code that you write and get

some results if I use that on my computer I should be getting the same exact results and thereby

we can verify each other's results. We have been talking about MATLAB in this course and rand

as we have seen already is the command in MATLAB for generating standard uniform deviates

the default generator is the Mersenne twister algorithm.

The default seed is zero if you want to change the seed to any other particular value if you want

to start with a random seed so to say you can use rng command rng n sets the c to the number n

that you want and if you want to take the seed from the system clock then use rng shuffle. As

you see on the screen. So with these standard uniform deviates we need to now set up and

undertake Monte Carlo simulations for all kinds of problems.

So obviously we cannot stay confined to uniform deviates we have to convert them to

distributions of our choice or the ones that we need.
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So there are various methods of generating random deviates from non-uniform distributions and

the inversion method is the most popular and it is the simplest to use and it is very general all it

says is that if you are able to generate standard uniforms and then if you can invert any arbitrary



distribution function then that would give you the deviate from that arbitrary distribution. So

here are the steps pictorially on the left you see the uniform density function the standard

uniform density function that takes on variables between 0 and 1.

And then that basically corresponds to the cdf the arbitrary cdf fx which also takes values

between 0 and 1. And then suppose u 1 is the first uniform deviate that the computer gave us and

then we take that come to the red line which is the cdf of x invert that at that value and we get x

1. So, that is how we invert u1 to x 1 the x 1 could be u 2 and that gives us x 2 likewise u 3 gives

us x 3 and so on. This method can be very useful but there are certain drawbacks are you need to

be able to invert the cdf f quickly and accurately.

If the inverse is not available in closed form so obviously there could be convergence issues. So

in such cases and the normal distribution is obviously the most celebrated example of that we

have to use other methods for accuracy and speed.
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When you have discrete random variables we can use the same inversion method but we just

need to remember that it is not a smooth function the cdf is not a smooth function it is a step

function and when we invert we have to keep that in mind. So for example you see a series of

these steps the cdf of x the discrete random variable x and if we generate say u1 as before then



we read off the cdf curve and see which step it belongs to so the all these steps are basically left

continuous.

So we make sure to get that particular value you can see u 1 gives us x 1 u 2 gives us x 2 and so

on. As we had in the continuous case but here the comparisons have to be done carefully. Here is

the algorithm detailed out so you see you keep comparing until the first time the cumulative PMF

the CDF exceeds the random number generated the standard uniformity we are generated for the

very first time so that gives us the value of x to be returned. Let us look at a few examples of this

inversion method how we can code that.
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So let us take two examples from continuous type distributions. Let us say we want to generate

an exponential with parameter lambda our starting point being a standard uniform deviate. So we

will generate the uniform u and then equate that to the cdf of the exponential so that gives us 1

minus exponential minus lambda x is equal to u and that we can invert and write x as negative 1

over lambda times log of 1 minus u.

In some texts and this is also a very good practice you will find that instead of log of 1 minus u

you will find log of u and the reason is that one minus u is it has the same distribution as a

standard uniform deviate obviously not identical to u but for our purpose it serves the same way.



And the benefit is that we for every time we generate x we do not have to do that subtraction

operation.

We can just start with u so that saves off sometime from the computational load. We can next

example we can look at would be to generate a gumball by the way this is the MATLAB code

that we can use to generate such exponentials we have seen this actually earlier in part A. So

suppose we want to generate 100 of these exponential deviates and this would be the command

you see the rand command which is the MATLAB call to the uniform generator.

Let us next look at how to generate gumball deviates let us say we have x a gumball random

variable defined by the two parameters alpha and m and we need to sample deviates from that

distribution so same process using inversion we generate the uniform u standard uniform and

then invert the cdf of the gumball at u so going through the algebra x would be m minus 1 over

alpha times log of minus log of u and this is the value that we would return.

The code would look something similar as you see on the left we would have a call to again rand

and keep doing it until we have generated the desired number of samples.
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We could use the inversion method also to generate normals but that would not be very desirable



because the normal cdf cannot be inverted in closed form although you can you can call such

functions but it is generally a little expensive and sometimes there could be convergence issues.

So there are more efficient ways of generating normal deviates one is the box Muller transform

we did discuss this earlier in this course.

The other is the acceptance rejection algorithm which uses the Laplace distribution etcetera. The

MATLAB command is rand n and it also uses the Martian Twister algorithm. Now this rand n

gives us or all the other methods that you see they give us the iid standard normals. So, if we call

them z then we need to transform these z's to any arbitrary normal and there we would use the

property that the normal distribution is closed under linear transformation. So, if we want to

generate a normal with mean mu and standard deviation sigma then we would just multiply that z

with sigma and add mu and obtain the desired normal deviate.
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We could generate correlated normal starting from independent standard normal and let us say

we want to generate a vector of n jointly distributed normal variables whose mean vector is mu

and the covariance matrix is vx. So we are going to again use the same linear transformation that

we saw but in reverse order. So if we if we have any random vector X and we do a linear

transformation on that we would get a new random vector y with mean and covariance that you

see on the screen.



Now if the x's are jointly normal then y is joint normal as well that we know and now we use the

special case that the size of y and x are same so m equals n the mean vector of x is 0 and the

covariance matrix of x is the identity matrix. So what we are getting at is that the x's are basically

the independent standard normal vector. So if that is so then y has a mean which is a 0 and y has

a covariance matrix which is a a transpose and a was the matrix that we used to create y.

So this tells us that we can actually take this approach to generate any correlated normal vector

all we have to do is we start with the IID standard normals and then choose a to be the lower

chords key factor of vy which is what we desire and then multiply a with the z vector and add to

that a 0 that is the mean vector that we want. And we have the desired and dimensional

correlated norm.
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Let us move on to Monte Carlo simulations using the inversion method for discrete random

variables so the general algorithm is this that we generate the standard uniform u and then let us

say x is integer valued so we set x equals 0 and then F is let us set F at p 0 the very first pmf and

then as long as the cdf has not exceeded u we keep going to the loop and the very first time that

cdf exceeds the uniformly we are generated we exit the loop and return the value of x the integer.



The mean number of comparisons is mean of x + 1 so it could get a bit computationally intensive

but that is the price of using the inversion method we could generate a Bernoulli random variable

very simply in one step we generate the uniform u and if p is greater than u we return x is one or

we return x is 0. The next set that you see is the binomial we do a similar comparison until we

succeed but here we have taken a slight change in the algorithm which speeds up the process a

little more.

We that cdf that you see p x being replaced by its current value times p over q times n minus x

plus 1 over x so that speeds up the computation of the cdf. We could set up a similar algorithm

for the Poisson deviate as well. So, all of these; use the inversion method.


