
Hydraulic Engineering 

Prof. Mohammad Saud Afzal 

Department of Civil Engineering 

Indian Institute of Technology-Kharagpur 

 

Lecture # 56 

Computational fluid dynamics (Contd.) 

 

Welcome back students, we were discussing about the partial differential equations in the last 

lecture where we have seen the elliptical or PDE, a parabolic and hyperbolic PDE.  
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And we also saw in the last class they start the sum of the concepts of the finite differences. So, 

we are going to proceed forward now and talk about elementary finite difference quotients. So, 

derived from Taylor series expansion so, the elementary finite difference quotients are real 

derived from the Taylor series expansions. So, example is that u i j is the x component of 

velocity u i + 1 at point i + 1, j can be expressed. So, u i j is the x component of the velocity, u i 

+ 1, j at a point i + 1, j can be expressed in terms of Taylor series expansion about point i, j as.  
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So, u i + 1, j can be written as u i, j + delta u del u del x at i, j into delta x + delta squared u by 

del x squared at i, j multiplied by delta x square by 2 and so on. So, this is using Taylor series 

expansion. So, this actually can be truncated after finite number of terms I mean we can decide 3 

terms of 4 terms of 5 terms. So, we can actually we have decided to truncate it after 3 terms.  

 

So, u i + 1, j can be written as u i, j + del u del x multiplied by delta x del squared u del x square 

into delta x squared by 2 and these are evaluated at i, j both of these terms. So, this equation is 

second order accurate because we have square term del squared u by del x squared.  
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So, if you want to make it first order liquidate it accurate it can be written as u i + 1, j is u i, j + 

del u del x evaluated at i, j into delta x. So, this is first in first order so, its first order accurate. 

So, it is now obvious that the truncation error can be reduced by retaining more term in the 

Taylor series expansion of the corresponding derivative and reducing the magnitude of delta x. 

So, 1 important thing to note here is that there is a truncation error so, the full value will be the 

exact and perfect value.  

 

But we have decided to truncate some of those term truncate means leave out those terms. So, 

this error can be reduced by retaining first ways retaining more terms in the Taylor series 

expansion the more than number of terms the less will be there. And if you reduce the magnitude 

of delta x, then also that can be there because this delta x is reduced then delta x x squared x cube 

will be even more and more is less, therefore, the truncation of those terms we do will be almost 

negligible.  
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So, from the above equation, you see the first order equation and the second order equation, if we 

write we can evaluate del u del x at i, j which means del u of i + 1, j - U of i j divided by delta x 

+ truncation error whatever we have left out. So, this is actually called the first order forward 

difference forward, because we have i + 1. So, if say this is i, j and this is i + 1 and, this is i + 1 

line and this is j line, this is j - 1 and this is j + 1 and then that means, it is forward i + 1.  

 



Similarly, we can also write del u del x i, j in the backward direction that means, u i, j - u i - 1, j 

by delta x + whatever the truncation error is, and this is called the first order backward 

difference. So, now you understand the difference between first order forward and first order fine 

in the first quarter backward difference. So, in the forward we have i + 1 - i and in the backward 

we have i - i - 1. So, I indicates the indices at the grades of the grids.  
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There can be another way where you can actually you know so, let us say this is i this is i - 1 this 

is i + 1, so, you can just do this one that. So, first write the equation between these 2 points then 

between these 2 points and subtract this is what we have done here, you know, so, this actually 

gives the difference between u i + 1 – u i - 1 you see, and then it will be divided by 2 delta x 

because the lens between this is delta x and this is delta x, so, this total becomes 2 delta x.  

 

So, this is another way and this is called the second order central difference, because we are 

calculating what are we calculating again drawing this is i, j this is i + 1, i - 1, j this is i + 1, j. So, 

we are actually calculating the del y by i - 1 i + 1. So, we are actually calculating del y by del x at 

point i, j So, it is that there we are calculating the value of dy by dx here using the point bag here 

and here.  

 

That is why it is called the send second order central difference this is central in the backward 

you see we are calculating it i using the 1 there - the 1 at the back here we are calculating it i 

using the 1 in front - the current 1. So we have to put time derivative as forward difference and 



space derivative of central difference. Called the FTCS forward time central space. So what we 

do we have to put time derivative as forward difference or time as forward difference, because 

time cannot be in the back?  

 

So we will always have to be forward and for the space we use central difference that is the most 

standard practice and this is called as FTCS forward time central space. So, you are expected to 

know these terminologies what FTCS is what is forward difference what is backward difference 

what is central difference in for time derivative which is used for space which is most commonly 

used. So, for space we said that was a central difference for time which is the forward difference. 

So, terms like that are quite important.  

 

So, we write u i in this is for the time, you see this n so for so we ride u i n + 1 – u i n is alpha u i 

+ 1 and So, these i + 1 and i and i - 1 are all calculated at the previous time or at the current time. 

Suppose we are at let us say we are at we are at time t = 1 seconds we have the solutions we want 

to calculate 40 = 2. So, velocity at t this is at t = 1 second, this is also this here. This is also at t = 

1. So, you see n n n. So, these all things we know from the previous time step what we need to 

know is u i at n + 1.  

(Refer Slide Time: 10:51) 

 

So, there is a term called consistency now, so what actually is consistency. So, a finite difference 

representation of a partial differential equation is said to be consistent, if we can show that the 

difference between the PDE and its finite difference representation vanishes as measures defined. 



So, this again in a different word, if this representation of I mean CVV said that we are going to 

represent partial differential equation in an algebraic form correct.  

 

So, this algebraic form is currently finite difference method we are using the method of finite 

difference to represent it into algebraic form. So, this solution is consistent if we are able to show 

that the real solution that is the PDE solution. The difference of that with the 1 that is obtained 

using the current method that is a finite difference method will go away will be 0 or it starts to go 

to 0 as we have gone delta x is refined as measures refined as max goes to 0. ,  

 

As the measures refined this is then you remember we had this limit delta x goes to 0 in your 

limit analysis. So, limit off mesh goes to 0, the partial differential equation - the finite difference 

equation goes to 0, if mesh the mesh size goes to 0 if we are able to show that that means our 

solution of the partial differential equation using the finite difference representation is consistent.  
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There is another term called convergence. The solution of the algebraic equation that 

approximate a partial differential equation same thing, is convergent If it approaches the exact 

solution of the PDE for each value of the independent variable as grid spacing tends to 0. So, the 

solution of this if the solution is turned to be convergent, if this solution approaches exact 

solution of the PDE for each value of the independent variable as the grid spacing turns to 0, not 

the combination of different variables for each.  

 



And individual for each x and y for example, x and y are the independent variables are for each 

of these x and y, this should converge to the real original solution of the PDE then that means the 

solution is convergent. So, the requirement is u i at n = u bar x i, y n as delta x delta t goes to 0, 

where u bar x i y and this dissolution of the system of algebraic equations.  

(Refer Slide Time: 14:11) 

 

Now, there is something called the error and the stability analysis the numerical solution which 

we have obtained using the finite differences scheme they are influenced by 2 sources of error 1 

is discretization the 1 I mean the errors are introduced you to 2 methods 1 of which is 

discretization this is the difference between the exact solution of the partial differential equation 

and exact solution of the corresponding finite difference equation truncation errors.  
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Second there is round off error. So, this is a numerical error introduced for a repetitive number of 

calculations in which the computer is constantly rounding the number to some decimal point. 

Suppose the accuracy of the computer is let us say 3 decimal units. And if our solution is 0 point, 

I mean 1.117985 or let us say assume the value of phi is 3.14 it goes on  so, when the computer 

is let us say a third of the accurate up to third order, the computer will keep on rounding the 

values.  

 

Therefore, there will be 1 error introduced due to the rounding off. So, 1 due to discretization 

second is due to the rounding off. So, this are the 2 errors that we had talked about.  
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Now, we can proceed to another concept in the computational fluid dynamics module that is von 

Neumann stability analysis. So what is the stability analysis? We say if A is the analytical 

solution of a partial difference accuracy and D is the exact solution from a real computer with 

finite accuracy. A is the analytical solution of partial difference accuracy and D is the exact 

solution from a real computer with finite accuracy and N is the numerical Samuel simulation 

from a real computer with finite accuracy.  

 

So, A is analytical solution D is exact solution exact means perfect solution and N is the 

numerical simulation, if we use these 3 terms. Then the discretization error is A - D = truncation 

error = the error introduced you to treatment of boundary condition whereas the round off error 

epsilon is N - D. Now you understand these round off error and the discretization error 

discretization error is a - d.  

 

So discretization A - D. So, analysts the difference of the analytical solution of the partial diverse 

difference accuracy - exact solution from a real computer with finite accuracy, whereas, the 

round off error is N - D. So, this is von Neumann stability analysis and we can write N = D + E 

D + epsilon.  
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So, the numerical solution and N satisfy the finite difference equation like this, and D is the exact 

solution of the finite difference equation and it exactly satisfies this one A and B, A was the 



finite difference in the first page that we saw A. You see this is A these the exact solution of the 

finite difference equation and it is exactly satisfies this, so and will satisfy both.  
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So, if you perform A - B, so, epsilon of n + 1 - epsilon i of n delta t will be written. So, from this 

equation we can see that the error also satisfies the difference equation.  
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For stability the errors must shrink from step n to n + 1. So, the mandatory condition is epsilon i 

of n + 1 divided by epsilon of i has time n must be less than 1 because it is supposed to decrease 

assume that the distribution of errors along the x axis is given by a Fourier series in x and the 

time was distribution is exponential in t, then we can write epsilon x, t is e to the power at So, 



this is the equation using which it is given L is the unit complex number  i capital i and k is the 

wave number. This is very complex.  
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Since the behavior of each term of series is same as the series itself. Hence, let us deal with just 1 

term of the series and so, we do see there are a lot of term in this series e at is the sum e Ik mx 

So, we just you know use only 1 term and we write E of m x, t e to the power at e to the power I 

k m x. And if you substitute this equation in the error equation, you see that error equation that 

we had got this was the error equation and if we substitute this.  
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In the error equation, we are going to get it a complex equation like this. Now, if we divide this 

equation by e to the power a t to the power i k m x we are going to get on the left hand side we 

are going to get e to the power a delta t because T and T will get cancel = a more simplified 

solution e to the power i k m delta x because x and x + delta x so, this will remain delta x here 

also delta x and y this will completely go away this will you know so, on dividing by e to the 

power alpha t at e to the power i k m of x. 
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we can therefore  using this equation from here we can write e to the power a l 40 can be written 

as 1 + alpha 2 delta t divided by delta x squared. So, you see this term here or we can write it in 

terms also of sine square by 2 term so this becomes 1 - 4 alpha delta t by delta x squared sine 

square km delta is by 2 the derivation is not in your scope, but we will finally look at the answer 

the result that we are going to get therefore, we can write this e to the power n + 1 see we have 

got e to the power a delta t.  

 

Therefore, this error we can actually write e to the power alpha t + delta t into e to the power i k 

m x divided by e to the power a t e to the power i k m x = e to the power a delta t.  
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So, this equation must be satisfied for stability mod of 1 - 4 alpha delta t by delta x squared sin 

squared k m delta x by 2 must be less than 1  or in other words this equation I think if you can 

remember this equation it will be quite good. So, just remember this final equation, not the entire 

derivation, but you should be able to follow what has been done from the lectures, so, this means 

what does this mean is, so see this sign squared k m delta x by 2.  

 

You know so, the condition can be written to be alpha delta t by delta x squared should be less 

than or equal to half, because this will always be less than 1. So, this is the final solution that we 

get for stability very important, so, you should remember this 1 as well on this 1 as well. So, the 

final solution here alpha delta t by delta x squared less than or equal to half. 
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 This gives the stability requirement for which dissolution of the difference will be stable and 

solution will proceed in stable manner if it satisfies the above relation. So, which relation this 

relation that is the final solution. So, the above mentioned analysis using Fourier series is called 

von Neumann stability analysis. So, you must be in principle knowing what is Von Neumann 

stability analysis. 
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So, using this we are actually going to you know until the concepts which we have learned and 

now, we are going to solve this 1 question using this now so, the question is classify the steady 2 

dimensional velocity potential equation, which is 1 - m squared phi xx + phi y y = 0 when m is 



less than 1 and secondly, when m is greater than 1 and third when m = 0, so, like always we are 

going to using.  
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White screen for this so, solution to so, first we write down what is given to us 1 - m squared into 

phi x x + phi y y = 0. So, therefore, a = 1 - m squared. So, you remember that we said 

discriminant of B squared - 4 AC we have to calculate you remember that part here they are no 

B, but C = 1, so I will let me take you to that because that is quite important thing to you know. 
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See A f x x + B f x y + C f y y + D f x + E f y + F f = G. So, let me just quickly just y here. So, 

you see our equation, it is write down here. So it is 1 - m squared f x x instead of f x x we write f 



phi xx + there is no phi x y. So, 0 in 2 phi x y + C is 1 into 5 y y we have + there is no only a phi 

x so we just write 0 into phi x + 0 into phi + 0 into phi = 0 that is the so when we write down 

what we say A is 1 - m squared and B is 0, and C is 1, because only these 3 terms are being used 

in the discriminant.  
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Because so, you see, the classification depends on b squared - 4 AC good the C, we have to 

classify the study to diminish the velocity potential. So, I think it is would be better if we start 

doing this problem in our next class, because otherwise, this is a slightly long problem and needs 

a little bit more detail to solve. So I think I will end the class today here and we start with the 

solution of this question in our next lecture. Thank you so much. 


