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Lecture-19 

Boundary Layer Theory (Contd.,) 

Welcome back to the continuation of the boundary layer analysis lecture.  

 

(Refer Slide Time: 00:29) 

 

So, we are going to start this lecture by solving yet another problem, where the 2 velocity 

profiles is given, one for the laminar flow here, and one for the turbulent flow. This is for the 

turbulent flow. So, this is laminar and this is turbulent. We are going to the ratio of the 

displacement thickness, delta dash / ratio of delta for laminar and the turbulent cases, for 2 

separate cases. So, to we will start. (Refer Slide Time: 01:10) 

 



We will go to white screen and we will start doing the solution. For lamina boundary layer, u 

/ U is given as, 3 / 2 - y / delta - half y cube by, so, let me just. Yeah, so, there is some 

mistake in my writing.  

(Refer Slide Time: 02:25) 

 

So, actually the laminar was u / U = 3 / 2 y / delta - half y cube / delta cube, this is laminar 

velocity profile. And therefore the, by definition, the displacement thickness is 0 to delta 1 - u 

/ U dy and we substitute this velocity profile, here, and we are going to get, integral of 0 to 

delta 1 - 3 / 2 y / delta + half y cube / delta cube into dy and after integration, which we are 

going to get, y from 0 to delta - 3 / 2 delta and this is going to be, y square / 2 0 to delta + 1 / 

2 delta cube y to the power 4 / 4 0 to delta.  

 

And the displacement thickness is going to be, this first term will be, delta - 3 / 4 delta + 1 / 8, 

this is 8 delta. This will give us, delta dash is equal to 3 / 8 delta and this implies that delta 

dash / delta for laminar case is going to be, very simple. This we have been doing. Anyways. 

now, we will do for turbulent boundary layer. 

(Refer Slide Time: 04:56) 



 

u / U is the velocity profile is y / delta to the power 1 / 7. So, the displacement thickness by 

definition is, 0 to delta 1 - u / U dy and we plug it in here. And therefore, what we get is, 

integral 0 to delta 1 - y / delta to the power 1 / 7 dy or we get, delta star as, after integrating 

and putting the limit, 0 to delta - 1 / delta to the power 1 / 7 into 7 / 8 into y to the power 8 / 7 

divided, no, and this also goes from 0 to delta. 

 

And therefore, this comes out to be, after limit delta, second term will be, 7 / 8 into delta or 

this is going to be, 1 / 8 delta. Therefore, displacement thickness and this is for turbulent. So, 

this is what the turbulent boundary layer. So, this question is complete. 
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And now, we can proceed to another topic, that is, von Karman momentum integral equation. 

So, what we do is, we consider a uniform flow past a flat plate of width b. So, the width of 



the plate is B. So, this is the definitions are as usual, a uniform velocity U is coming and it 

strikes the leading edge here, and then the boundary layer would start to develop and at the 

end of the boundary layer where the boundary layer the thickness is delta x, there will be a 

shear stress developing tau w, as a function of x. 

(Refer Slide Time: 08:14) 

 

So, we have written the, I mean, we have shown the figure again on the right hand side. So, 

what is the assumption? The assumption is that the pressure is constant throughout the flow 

field. The flow entering the control volume at section 1, here, this is uniform, leading edge of 

the plate. So, the flow entering the control volume at section 1, section 1 is the leading edge 

of the plate is uniform. 

 

And the velocity of the flow at section 2, here, varies from 0 to U, and this happens because 

of the boundary layer. So, this is the assumption that we start with. 
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So, the fluid in the immediate vicinity of the plate makes up the lower portion of the control 

volume. So, you see the control surface here. So, we have chosen a control surface here. This 

control surface, it says, that the fluid in the immediate vicinity. So, this one you see, the dash, 

dash line, now, I am marking it red, red, red dots, this is the lower portion of the control 

volume. And the upper surface of the control volume coincides with the streamline just 

outside the edge of the boundary layer. So, you see, this is the top most surface of the control 

volume. 

(Refer Slide Time: 10:03) 

 

Now, if you apply the conservation of linear momentum along x direction for steady flow, 

what do we get? So, you do you remember this equation from somewhere, just a quick 

thought? Yes, it is Reynolds transport theorem that we did in week number 2. So, the 



conservation of linear momentum along steady along the x direction for the steady flow gives 

us  

    . 

 For steady flow therefore, there is no time variation. 

 

We can also write, so, drag sigma Fx is equal to - of F drag. So, drag will have happened 

because of this shear stress here. And this is as I told, is due to taw W. 
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Now, this equation number 4, can be written as, - F drag. So, I will, so, this is the equation, 

we write, 

. 

 And this gives us equation 5. What we did it? We just use substituted the equation 4 and 

input in the velocities. And this is section 1, where uniform flow was there and here the 

boundary layer. And now, you can understand why 2 different forms of momentums we have 

written. 

 

And this is minus U, because the velocity vector makes an angle of 180 degree with the 

normal. So, this was the control surface, you remember, something like this. So, the velocity 

was in this direction and the normal to this surface was here. So, that is why 180 degrees, or 

simply, we multiplied - 1 on both side. This becomes F drag is equal to ρ U square bh - ρ 

integral 0 to delta u square bdy. This U is capital, this u is small.  



(Refer Slide Time: 13:04) 

 

From the conservation of mass, the flow rate through section 1, here, must equal the mass 

flow rate through section 2, that is, correct. Therefore, we can write, U into h. So, U into h is 

equal to integral u dy. If you assume, you know, thickness element of thickness and at 

distance y, the velocity is u, so, it becomes u dy. Very simple. 
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So, if we multiply ρ Ub to both side of the equation 6, this is equation 6. So, we get, ρ U, 

capital U square, so, we multiply this term, ρ U b. So, for the left hand side becomes ρ U 

square bh, is equal to ρ b U u dy and this is integrated to 0 to delta. Now, if we substitute this 

equation, equation 7 into equation number 5. I will take you to equation number 5 again.  

 

So, this was equation number 5, with the drag force equation. What we get? F drag is going 

to be, ρ b integral. So, the idea was to substitute the first term in equation number 5 by this. 



So, it will be written as, ρ b integral 0 to delta U u dy and this was already there, in the 

equation number 5. 
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Or simply, if we take some terms outside and take the common, it becomes forced drag, F 

drag will become ρ b integral of 0 delta u multiplied by the velocity deficit into dy. Simply, in 

other words, if you take, if you or, I mean, you multiply this side by U square and divide this, 

so, it will not make a difference U then you get, ρ b U square integral of u / U into 1 - u / U 

dy, very simple. 

 

Simply, I will write, multiply and divide RHS with U square then you can get this. So now, 

what is this? You remember? This is the momentum thickness, theta. Remember from our 

last lecture? So, F drag can simply be written as        ,where ρ is the density, b is the 

width of the plate, U is the free stream velocity and theta is the momentum thickness.  
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If we differentiate both sides, with respect to x, this equation, equation number 8, if we 

differentiate, we can get,  

            

, other things are constant become d theta dx and we can write this as equation number 9. 

Also, we know that, this drag was due to integration of shear stress or the entire area, integral 

tau w b dx. We get. if we differentiate this, with respect to x, we get, simply, this integration 

sign will go and it will become dF drag / dx is equal to taw w b.  

 

And then, you know, what needs to be done. We are going to substitute, I mean, equate 

equation number 9 and equation number 10 and we get, taw w is equal to ρ U square d theta / 

dx. I will just, I mean, very elementary, but let me show you, ρ b U square . So, ρ b U square 

d theta dx is equal to tau w b. So, b will get cancelled here. So, tau w will become  

. 

 (Refer Slide Time: 18:31) 



 
So, this is what it is written here and this famous equation is called von Karman Momentum 

Integral Equation, a core component of this module and the hydraulics, in general. And this, 

the beauty of this equation is, it can be applied to both laminar and turbulent boundary layers. 

So, this is the general equation, because we have not at any point in time assumed whether 

the flow is laminar or turbulent.  
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Now, what are the boundary conditions at the plate? It is very simple, u, the velocity at the 

plate is going to be 0. The second condition is, d square u / dy square at y is equal to 0. This 

is the second boundary condition. Now, the third boundary condition is at the top of the 

boundary layer. This means that the velocity at the top of the boundary, that is, the free 

stream velocity and this is no slip and the velocity gradient at the top of the boundary layer is 

going to be 0. Now, we will use all these boundary conditions in our further analysis.  
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With this, we are going to start solving one problem. The question says, an approximate 

expression for the velocity profile in a steady 2-D incompressible boundary layer is given by 

the following function. Now, we have to show that the profile satisfy u at, I mean, we have to 

see that the boundary conditions are actually satisfied or not. These are the velocity profile. 

And here, eta is y / delta. So, to solve the question we are going to go to the white screen. 
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So, we have been given, u / U is equal to 1 - e to the power – eta + K into 1 - e to the power -

eta - sin pi eta / 6. And this is for eta, greater than or equal to 0 or greater than or equal to 3. 

Also, u / U is equal to 1- e to the power - eta - K e to the power - eta and this is for, eta greater 

than or equal to 3.  

 

Here, eta is given as, y / delta. So, actually, when y is equal to 0, implies, eta is equal to 0. 

When y is equal to delta, eta is equal to 1, and when y is equal to infinity, implies, eta is equal 



to infinity. So, first part where, now, u / U at y is equal to 0, can be written as, u / U y is equal 

to 0 is equal to u / U. Simply, y is equal to 0, means, eta is equal to 0. 
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Therefore, u / U at eta is equal to 0, can be written as, 1 – 1 + K into 1 - 1 - 0. So u / v is equal 

to 0, implies, sorry, not v, u / U, implies, u at y is, I will go to the white screen again.  
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Simply, u at y is equal to 0 is 0, thus proved. For y is equal to infinity, eta is equal to infinity. 

Therefore, u / U is equal to 1 - e to the power - K eta to the power. Therefore, u is equal to U 

- U K e to the power 1 - eta. Now, u at y is equal to infinity is equal to u at eta is equal to 

infinity is equal to U - U into 0 - U into K into 0. So, therefore, u at y is equal to infinity is 

equal to U and thus second part is also proved. 
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So, now, del u / del y is equal to del u / del eta into del eta / del y, implies, del u / del y is 

equal to del del y of y / delta into del u / del eta is equal to 1 / delta into del u / del eta. This is 

another equation. And we have seen the equation number 1 before, that U was, which we just 

wrote it, U is equal to U – K e to the power - eta - e to the power – eta, this was 1 actually. 

So, differentiating both sides of equation 1,with respect to eta, we get, del u / del eta is equal 

to, this is equation 1, equal to U e to the power - eta + U K e to the power - eta, that is, 

equation number 3. Now, del u / del y at y is equal to infinity is equal to del u / del y at eta is 

equal to, n is equal to infinity using both and this comes out to be, 1 / delta u e to the, capital 

U e to the power – infinity + U K to the power - infinity and this comes out to be, 1 / delta 0 

+ 0. Thus, del u / del y at y is equal to infinity is 0.  

 

So, there is one more part left. For del square / del square u / del square, del square u / del y 

square. But I will leave it up to you to prove it. Try yourself at home using this maths that we 

have seen. So, this concludes the problem for today. And we will start with another problem, 

problem number 5 when we resume next. Thank you so much. 

 

 

 


