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In the last class I derived the governing differential equation for a beam subjected to axial force, 

as well as lateral load. The equation was first developed for a beam and then implied to pile. 

(Refer Slide Time: 00:48) 

 

These are the different distributions of kh discussed in the last class considering both linear and 

non linear relation between p and y. The expression when the beam is subjected to horizontal 

load alone without any axial force was also given. 

(Refer Slide Time: 01:13) 



 

And then the expression for beam under axial force was derived. 

(Refer Slide Time: 01:16) 

 

The expression for beam under axial force and the governing differential equation for pile under 

axial load are given. Now let us solve this equation using finite difference method. The kh value 

maybe uniform throughout the soil, or may vary linearly or non-linearly. As long as it is uniform 

or linearly varying, it is easy to obtain the closed form solution but when the non-linearity comes 

into picture, it would be difficult to get the closed form solution. This is when the finite 

difference method proves to be useful. 

 



As discussed in the previous classes, the first step in the finite difference method is to consider 

that the structure of interest (here, pile) is divided into number of segments. The points which 

divide the pile into segments are called nodes and it is considered that here, there are n number 

of nodes. 

 

As the order of the differential equation is 4, we need 4 boundary conditions (just like the beam 

problem) to obtain a solution for this differential equation. For this, we need four imaginary 

nodes that may be named: 1′, 2′, (n+1)′ and (n+2)′. The finite difference for of this differential 

equation is: 
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If Pz = 0, the original differential equation will be: 
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This equation is for the case when there is no axial force and this can also be written in the finite 

difference form. 

 

Note that in these 2 equations, the p-y relationships were considered to be linear which means 

that kh is uniform along the depth or that kh is constant. But using the finite difference method, 

solutions can be obtained for any type of distribution. The various types of distributions or 

variations were already discussed earlier. 

 

The variation of kh is nothing but the shape of p-y curve. When talking about the p-y curve, 

understand that in some cases it may have different curves at different depths. This is shown in 

the first slide of this lecture. In that curve, there are a number of graphs which represent different 

depths (say, z = 1, 2, 3, etc.). The initial portion of the curve is more or less the linear variation 

and after that, it tends to reach the ultimate value. So, the important observation that is to be 

made here is that the relation between p and y also changes with depth in some cases. 

 

This is true for the sandy soil, where it was mentioned that the variation of kh is not uniform, but 

varies with depth. So the relation between stress and displacement that is valid at one depth for a 



soil may not be valid at another depth for the same soil. The p-y relationship may change and the 

kh variation may change. These two things should be taken care of, when this type of problem is 

being solved. This is why it is considered that kh is a function of depth while solving these 

governing differential equations. 

 

So, a nonlinear relationship between p and y should be considered along with the variation of kh 

with depth. The finite difference method makes it possible to incorporate these things in the 

equation and solve. 

(Refer Slide Time: 11:30) 

 

Now let us see the boundary conditions under the loading conditions considered. The loading 

conditions considered here are: an axial force of Pz, a horizontal load of H and a moment Mo. 

Under these loading conditions, for a free head pile the boundary conditions will be discussed 

now. Firstly, the relation between moment and shear force was formulated as: 
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This was the relation when the axial force considered was tensile in nature, but here the axial 

force is Pz (which should be substituted in N) and compressive in nature. So the sign for the axial 

force term will change. Also, during the derivation for the beam the axial direction was 

represented by x but here it is the depth which can be represented by z. So the modified equation 

will be: 
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Substituting the above value of M in the equation for Qv, we get: 
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Now, the pile is considered long enough (considered as a semi-infinite beam) that at the tip or 

bottom of the pile, the shear force and moment will be 0. The bottom of pile is when the depth is 

equal to the pile length, z = L. So: 
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 should be expressed in the finite difference form. From that, 4 

unknowns relating to the imaginary nodes, 1′, 2′, (n+1)′ and (n+2)′ can be obtained. Then the 

imaginary unknowns can be converted or related to the real unknowns. After this using the four 

boundary conditions (about to be determined) the unknowns can be solved. Once all the 

unknowns are real, they can be solved with the n number of equations to find out the deflection 

and other quantities at any point. 

 

There is another boundary condition; the moment at the base of the pile is 0: 
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The above is the boundary condition at the base of the pile at a depth of L. At z = 0 or at the pile 

head, a moment Mo is applied and as it is a free head pile, the moment value at z = 0 will remain 

Mo. So, the boundary condition for bending moment at z = 0 will be: 
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Similarly, the boundary condition related to shear force at z = 0 will be: 
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The signs in the above two boundary conditions depend upon the directions of the applied forces. 

Here, both Mo and H are considered to be positive, but the sign may vary if their direction 

changes. 

 

The four unknowns that are in excess because of the four imaginary nodes are now balanced with 

the four boundary conditions. Now, as the number of unknowns and number of equations are 

equal, the solution can be obtained. 

 

Remember that if the effect Pz is neglected, then in the place of Pz, 0 should be substituted only 

when the responses will be free from the effect of Pz. If the response for axial force is to be 

studied, the appropriate value of Pz should be substituted in the equations. 

(Refer Slide Time: 22:38) 

 

Till now, the case of free head pile has been dealt with. Now, let us start the discussion about 

fixed head pile. The boundary conditions at z = L will be the same as that of free head pile 

because the only difference between fixed head and free head piles is the fixity at pile head. 

Also, at z = 0, the shear force boundary condition is the same:  
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The only difference in both the cases is the other boundary condition. Here, due to the fixity of 

the pile head, the slope will also be zero at the pile head. By considering this, the generalized 

solution for lateral loaded pile using subgrade modulus concept can be determined. 

(Refer Slide Time: 24:36) 

 

The next concept under the laterally loaded piles is the elastic analysis or the interaction factor 

approach. Till now, the laterally loaded piles are analyzed using the subgrade modulus approach 

and the quantities determined were for the single pile. But piles are often used as groups and so 

the pile group response under lateral load should also be studied. 

 

The pile group response, the procedure to determine the expressions and the method to use them 

were discussed for the pile groups under compressive load using elastic analysis. Now, in a 

similar way the elastic analysis approach will be dealt for the laterally loaded piles. The 

interaction factor approach basically deals with the interaction among piles which effects the 

settlement. In a pile group of n piles, settlement of the k
th
 pile can be given as: 
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where, HG is the horizontal load applied on the pile group, H is the horizontal load applied on a 

single pile, Hρ  is the unit settlement or displacement of a single free head pile under unit 

horizontal load, Hk is the horizontal load taken by the k
th

 pile (part of HG that acts on the k
th
 pile), 



αρHkj is the interaction factor for settlement between the k and j piles (here, ρ refers to settlement, 

H to horizontal load, kj to the piles between which the factor is being calculated), Hj is the 

horizontal load taken by the j
th
 pile. 

 

Another term which is not used in the above expression directly, but will be required during the 

calculation is β. β is the angle between the load direction and the line joining k and j piles. The 

Hρ  is multiplied directly with the Hk, (the load on the pile for which settlement is determined) 

because the interaction factor for the own pile will be 1 (i.e., αρHkk = 1). 

 

Using this information, the settlement of a particular pile in a group can be calculated 

considering the effect of all other piles in that group. In the above expression, only the settlement 

was taken care of, but interaction between the piles will affect other quantities also. There are 3 

more interaction factors to be considered. 

αρH is for settlement under H 

αρM is for displacement under M 

αθH is for rotation under H 

αθM is for rotation under M 

There is a chance that moment may also come into picture in the lateral direction on a pile group. 

The best example is when the pile cap is at a height above the ground level and a horizontal load 

is applied at the pile cap. So, there are two types of interaction factor here: one for settlement / 

displacement and one for moment. If the rotation should be calculated, the interaction factor 

rotation should be considered. If any pile group is subjected to both horizontal load and moment, 

both type of interaction factors should be considered. 

 

Before calculating the load each pile is taking in a group, it should be remembered that the sum 

of an individual load each pile is subjected to, is the group horizontal load, HG. There are some 

assumptions involved in this analysis as: for a free headed pile group, horizontal load and 

moment may be applied, but for a fixed head pile group only horizontal load can be applied. 

Also, both for the fixed head and fee headed pile groups, all the piles are subjected to equal 

amount of displacement.  

 



In the next class I will show how to determine these interaction factors under different conditions 

(free headed or fixed head). Then, we will see how to determine the settlement and the rotation 

of a single pile. To calculate the deflection and rotation of a pile group, we need to know the 

settlement and rotation of a single pile. Thank you. 


