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In this class I will first discuss about the solution for the generalized expression of a beam to 

determine the deflection and the other quantities for a laterally loaded pile. 

(Refer Slide Time: 00:42) 

 

An example using the Reese and Matlock approach was solved already and the determination of 

deflection for both free head pile and fix head pile was shown. Also, calculating the deflection of 

a fix head pile and free head pile using Hetenyi approach was discussed. Hetenyi approach is for 

constant kh and the Reese and Matlock approach is for linearly varying kh with depth. 

(Refer Slide Time: 01:38) 
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If the pile is to be considered as a semi infinite beam, it is obvious that it should be a very long 

pile or an infinitely long pile. The concept of semi infinite beam discussed in lectures 25 and 26 

can be referred to, for clarity about the analysis of semi-infinite beams. 

 

If a free head pile is long enough to consider it as a semi-infinite beam, it can be considered as a 

semi-infinite beam with free ends as the boundary condition. Consider the case-1 loading, a 

horizontal point load of H acting on the pile. In the pile, the head which is at the ground surface 

(here) is the free end and the base of the pile will be the infinite end. So, for the case-1 loading 



the end conditioning forces and the procedure discussed for the pile as a beam of finite length 

can be applied. 

 

So, the expression for deflection, y is: 
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If the pile is subjected to a concentrated moment (case-2 loading): 
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The fixed head piles can also be solved similarly. By equating the deflection in free end to the 

slope restricted due to the fixity, the additional moment developed at the fixed end can be 

determined. 
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This is the moment that has to be applied at the ground level. 

Now the question is when can these piles be considered as semi infinite beams. 



(Refer Slide Time: 10:33) 

 

The expressions for piles with finite length and for semi-infinite piles are similar apart from a 

minor difference of the co efficient. Above chart is already given for the piles with finite length 

and may replicate for the semi-infinite pile too. The kρH term is almost equivalent to Dλz in the 

semi-infinite case. But here, the value of Dλz for z/L = 0 is 1.1376 which is not the same. So, for 

a λL value of 2, these charts cannot be used for semi-infinite piles. So, these charts can be used 

only if the pile is of finite length. 

(Refer Slide Time: 11:45) 

 

For a λL value of 3, the coefficient value is approaching 1 (1.0066). As λL value increases the 

mean length of the pile increases. 



(Refer Slide Time: 12:00) 

 

Similarly for a λL value of 4, the coefficient value is 1.0003. So, if the λL is greater than 2, the 

coefficient values are almost matching and hence, usually if λL is greater than 2.5 then it is 

called as a long pile. The concept of semi infinite beam can also be used only in such case. But, 

usually the pile with finite length will be used for a λL value up to 5. If the λL is greater than 5, 

then the pile must be considered as a semi-infinite pile only because there are no coefficients 

available for such case. 

(Refer Slide Time: 14:23) 

 

Now, a generalized solution of pile and the procedure to solve it using the finite difference 

method will be discussed. That generalized solution is proposed by Reese and Matlock. This is 



nothing but the generalized solution of p-y curve. The relation between the deflection and the 

stress is given by: p = kh × y. 

 

So the distribution of kh for the first case where kh is linear, will be: kh × d = ηh × z 

Similarly, if the kh is non linear, the distribution can be written in the following forms:  

kh × d = ηh × z
n
 

OR 

kh d = k0 + k1 z + k2 z2 +….  

OR 

kh d = k0 + k1 z 

The first two representations are truly non-linear variations. The last one is a linear variation, but 

with an initial value of k0. 

 

From the initial discussions, from the p-y curve: p = kh × y which is the linear variation.  

If the non-linearity has to be introduced in this, we may consider that: 

p = kh × y
n
 or p = kh × z

m
 × y

n
 

The coefficients kh, m and n are experimentally determined. So any type of variation of kh or any 

type of relationship between the p and y can be considered (linear or nonlinear). 

 

Now consider the general beam expression applied to the case of piles: 
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This is the general beam expression which is being used for the pile and springs where horizontal 

load, H or moment, M may be applied. But in addition to H, pile is also subjected to an axial 

force. That means that the pile is subjected force along with the horizontal load in almost all the 

cases. So, in addition to H, the pile experiences a Pz and sometimes moment. But in the normal 

beam expression, the consideration is only for H or M. So considering this case the expression 

for beam, rather pile under axial load should be developed. 

(Refer Slide Time: 21:19) 



 

Now the expression for beam under axial load or axial force will be developed. First the 

expression will be developed for the beam which can be used for the pile. Consider a small 

segment of beam with length dx as shown in the first figure above. As the beam rests on soil and 

the soil can be idealized by springs, the reaction it experiences at the bottom will be: p = k × y.  

Remember that here, k = ko × b and that the units of ko are kN/m
2
/m.  

 

Then consider an axial force or axial tension, N acts on either side of the beam element. A shear 

force in the vertical direction, Qv is assumed to act on the left side phase of the element while a 

shear force of Qv+dQv is assumed to act on the right side. Similarly a moment of M acts on the 

left side and a moment of M+dM acts on the right side of the element. The distance from the 

origin to the left side face of the element is x. The distance from the x axis to the axial force, N 

acting on the left side face is y and the distance from the x axis to the N on the right side face is 

y+dy. 

 

In the initial case, the pile or the beam was not subjected to axial tension N, but now it has been 

introduced. The deformed shape of the beam would be like the second figure in the above slide. 

The deflection line or the axis of the deformed shape is indicated by the dashed line in the second 

figure and in this deformed element, the Qv acts in the vertical direction as discussed already, but 

the Qb will act with a slight deviation from the vertical as it will be normal to the deflection line. 

This slight deviation is quantified as an angle, θ. Qv is the vertical shear force, Qn is the normal 



shear force acting in the plane of the section normal to the deflection line. Now the relationship 

between these two shear forces will be: 
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Differentiating the above expression w.r.t x: 
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So the final expression will be: 
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The above is the expression for beam under axial force when that force is tensile in nature. But 

for piles, the axial force will be compressive in nature in most of the cases and hence the 

expression in case of a compressive axial force will be: 
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This is the governing differential equation for a beam under axial compression. If this is implied 

to the piles under an axial compression force of Pz: 
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Here the kh is considered to be constant throughout the pile length. 

 

In the next class I will provide the boundary conditions for this governing differential equation 

because we have to solve this governing differential equation. So, I will show you how to solve 

this differential equation by using the boundary conditions and to apply the finite difference 

method to solve these equations. So, I will discuss that boundary conditions and solution 

procedure using the finite different scheme in the next class. Thank you. 


