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Lecture - 41 

Plates on Elastic Foundation 

 

In this class I will discuss about plates resting on elastic foundation. First I will discuss about the 

rectangular plate and then about the circular plate. I will give the basic differential equation and 

the boundary conditions, but I will show the solutions when I discuss about the numerical part 

using finite difference scheme. 

(Refer Slide Time: 01:07) 

 

The first topic in this discussion is the Poisson-Kirchhoff plate theory but we will restrain only to 

thin plates part. The 4 assumptions under consideration are shown in the slide above. Consider a 

rectangular plate of thickness h and a section of that plate in x-z plane. The thickness h can be 

seen in this view and a surface can be assumed which divides the plate’s thickness to two halves. 

 

The first assumption is that the displacements of this middle surface of the plate are assumed to 

be very small as compared to the thickness of the plate and the strain and rotation of the plate are 

also assumed to be small compared to with unity.  

 



The component of stress normal to the middle surface is assumed to be small as compared to the 

other component of stress and hence can be neglected. The component of the stress normal to the 

middle surface means the component of the stress acting in the z direction. So, the stresses acting 

in the z direction are neglected because it is assumed that they are small compared to the stresses 

acting in other directions. 

 

The plane cross sections normal to the un-deformed middle surface remain normal to the 

deformed middle surface. This means even after the deformation, the cross section normal to the 

un-deformed surface will remain normal to the deformed middle surface. Another assumption is 

that since the deflection of the plates are small, it is assumed that there is no stretching of the 

middle surface during the bending.  

 

So when the beam bends, there will be no stretching of the middle surface implying that there 

will be no lateral deformation. When a plate deflects only in the z direction, then for the points 

located on the middle surface, u and v will be 0 (u and v are the components of deflection vector 

in the x and y directions).  

(Refer Slide Time: 05.03) 

 

Let us start the derivation for this rectangular plate. Consider a section of the beam in the xz 

plane and consider 2 points A0 and B0. A0 is at the middle surface and B0 in the bottom half of 

this section of the plate. 



 

Let the distance between A0 and B0 be z and it is obvious that the middle surface divides the 

plate section into two parts, each with thickness h/2. After applying a load, the plate bends and in 

that deflected shape (or state), the position of A0 is now A and the position of B0 is B. So, the 

distance between A and B will be z again. 

 

But if a normal is considered, then there is a shift in this point and that shift is u. So u is the 

displacement in x direction. Similarly there is another component, v which is the displacement in 

y direction. The formulation of u can be explained with the small right-angled triangle figure in 

the above slide. In that figure, the vertical straight line is the initial position of z, A0B0 and the 

hypotenuse of this triangle is the deformed distance between these points, AB. So, the distance 

between them in the x direction is u. So, we can write: 
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It is also assumed that the normals to the middle surface before bending remain normal to the 

middle surface after bending. This is possible only when strain in xz and in yz planes is 0. 

εxz = εyz = 0 

The stress strain relationship for an isotropic elastic thin plate in bending can be written as: 
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The strain expression can be re written as: 
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By substituting all these values in the stress-strain equations, we get: 

(Refer slide Time: 17:59) 
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Now, considering the equations of equilibrium: 
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From equation (1): 
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Substituting the value of σxx from equation (a) and the value of τxy from equation (c): 
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where, 2  is the Laplace operator, 
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Similarly, from equation-(2): 
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After solving the last two equations, we get: 

 
w

x

E
c

z

p

p

xz

2

2

2

12

















  

 
w

y

E
c

z

p

p

yz

2

2

2

12

















  

where, c is the constant of integration 

In the next class I will discuss how to get the c value and by substituting the c value, how to get 

the basic differential equation for the plate which is resting on the elastic foundation (simply, 

plate resting on spring). After that I will continue with a theory for circular plate and then I will 

discuss about this plate resting on a 2 parameter soil medium. In the beam case also I have 

discussed the beam resting on spring and then on 2 parameters soil medium. So, I will follow the 

same pattern for plates too. Thank you. 


