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Different Foundation Models (Contd.) 

 

In the last class, the Pasternak model was discussed and some of the forces acting on an 

element of the shear layer were considered as a part of the derivation for the expression. In this 

class, the basic differential equation for the Pasternak model will be derived followed by the 

different modifications over this model.  
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The various components and forces involved in the model were discussed in the last class and 

shown in the slide above. The load on the soil is applied in the form of a UDL of intensity q 

kN/m
2
 which produces a reaction of qs from the springs. In the present condition, the strain in 

the y direction will be zero for the plane strain condition to exist, which is perpendicular to x 

and z directions. 

 

So far, the forces considered acting on this cube are the UDL, q at the top and the reaction qs 

from the springs at the bottom. In addition to these, the side shear forces, Nx and dx
x
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act in the x direction, which are shown in green. The force dx
x

N
N x

x



 is assumed to be acting 

on the right side face of the cube. The other two faces in the y direction will be subjected to 



shear forces, Ny and dy
y
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front side face of the cube. N is the shear force per unit length of the shear layer expressed in 

kN/m. 

Now considering the sum of all forces acting in the z direction, the expression would be: 
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The forces acting downward are considered positive and the upward forces are considered to be 

negative. So, Nx, Ny and qs are given negative sign and the rest are considered positive. The 

UDL q kN/m
2
 acting on the top of the cube is acting downward (positive) and should be 

multiplied with the area of the top face of the cube to convert it into a force (in kN). Similarly 

the reaction of the springs, qs kN/m
2
 acting on the bottom face of the cube in the upward 

direction (negative) should also be multiplied by the same area (the top and bottom faces have 

the same surface area) to convert it into a force. Since the forces dx
x
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along a face of width dy, these forces are multiplied with dy in the above expression. The 

similar formulation is followed for the other forces too. After simplifying the above expression 

would take the following form: 
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As the dxdy term is common in all the terms, it can be vomited by cancelling, further 

simplifying the equation to: 
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The above sum is basically the shear stress in the xz plane which is equal to 0. By definition, 

shear modulus, G is a ratio of shear stress over shear strain. So, shear stress in a plane will be 

equal to G multiplied by the shear strain, γxz in that particular plane (here, the xz plane).  

xzxz G   

But the shear strain can be written as xw  in xz plane. 
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The shear force, Nx is the total of unit force acting per unit thickness of the shear layer. This 

force can be obtained when an integral over 0 to H is applied for the product of shear stress for 

a particular unit thickness and the corresponding thickness (dz), H being the total thickness of 

shear layer. To evaluate the total shear force acting on the shear layer, the thickness of it is 

assumed to be divided into unit thicknesses of dz which, when integrated over the full 

thickness, gives H again. So, the shear force acting on that small element is (τxz×dz) which is 

integrated from 0 to H, to get the total shear force. 
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Now consider the expression for Nx and: 
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Similarly, 
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Substituting the above values in the expression for total shear stress in xz plane 
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In the expression above, all the parameters vary with x and y except for the parameters G and 

H. 
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As per Winkler model, qs=k×w. 

So, the above equation can be further written as: 
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This is the basic equation of the Pasternak model for the xy plane. The plane strain condition is 

a special case which can be derived with the help of the general case shown above. For the 

plane strain condition, the shear strain in yz direction will be 0 (γyz=0). It is known that, 

yzyz Gγτ   and yzy HτN  . So, if the shear strain in yz direction is zero (γyz=0), the value τyz 

would be zero and eventually Ny term would vanish from the above equation. 
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This is the basic equation of Pasternak model under plane strain condition. The equation for 

plane strain condition is in terms of x alone because of its independency on the y direction. 

There are still two issues with this model: the time dependent settlement is not considered and 

the response is linear. 
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Now, let us try to include non-linearity in this equation. Consider a load versus deformation 

plot or a q by w plot which is non-linear as shown in the top right figure of the above slide. This 

non-linear behaviour can be idealised into two parts for simplification, in which one changes 

linearly up to a certain value of deformation (w0) and the other is parallel to the X-axis beyond 

w0. So, beyond w0, the stress q is constant and only the deformation varies. As long as the 

deformation, w is less than w0, the q value would be k0w and beyond that, it would be k0w0: 

q = k0 w for w < w0; 

q = k0 w0 for w > w0;  

where, k0 is the initial subgrade modulus 

The value of k0 would be determined from the initial portion of the curve because the subgrade 

modulus, in this case is varying due to the nonlinear behaviour. So, as the k value keeps on 

changing, the subgrade modulus is calculated from the initial portion of the curve and so it is 

called the initial subgrade modulus. 

 

Another way of representing the above non-linear behaviour is the bilinear response. A bilinear 

representation is in which, a non-linear curve is represented with two straight lines of different 

slopes like the figure shown above. In the slide above, the graph with bilinear representation 

shows a linear behaviour of slope k1 up to a deflection value of w1 and then the slope changes 

to k2 beyond w1.  

q = k1 w for w < w1 

q = q0 + k2 w for w > w1 

where, q0 is the projection of the line with slope k2 on the Y-axis. 



The non-linear response discussed now is just a simplified approach where the actual non-linear 

response is idealised by few linear responses approximately. In the next class, I will discuss 

about the actual nonlinear response and the procedure to model it which will be introduced in 

the basic governing differential equation developed for the Pasternak model and then will try to 

develop basic differential equation of the Pasternak model under nonlinear response, thank you. 


