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Matrix Techniques – II

Welcome. We started with some matrix methods to use for solving the model equations

we obtained. And we started with the methods which can give us the solutions without

any iterations and that were LU decomposition and the tridiagonal matrix system. Now

in this lecture we shall be going further with a few more methods and in this lecture we

shall be covering both the direct methods and the iterative methods.

(Refer Slide Time: 00:48)

So, first let us the Gauss Jordan method which is a modification of the Gauss elimination

and it  is  often  used  to  find  out  the  inverse  of  a  matrix  and in  this  case  we use  an

augmented matrix. And this particular method I shall be illustrating you with an example.



(Refer Slide Time: 01:03)

So, here we see that we have a set of equations with the 3 variables x 1 x 2 and x 3 and

these equations have to be solved to get the value of x 1 x 2 and x 3. So, let us first put

this set of equations in terms of the matrixes. So, you have these are A matrix of the

coefficients and the X matrix is a  unknowns, the vector and B the vector of the forcing

functions ok.

(Refer Slide Time: 01:32)

Now, what we do that after this thing, we make the augmented matrix what we do that,

we put another matrix in this we put the values of a first and the last column we put all



these forcing functions over here. Now what we do that, we first normalize the first row

by dividing with the pivot element; pivot element are the elements at the diagonal.

So, if I divide the first equation with the diagonal element, we get this particular thing.

And a second equation we divide by the seven. So, we get this thing and the third one we

get this. Now you see that we are trying to reduce the whole system into that we want to

have a upper triangular matrix. So, we are doing what that R 2 and this is going to R 2

minus 0.1 into R 1 so, that we are getting this as 0. So, this way we are able to slows 1 by

stepwise, we are able to get the 0s at the lower triangular thing. So, this we continue.

(Refer Slide Time: 02:40)

This is also done in the Gauss elimination method and in Gauss elimination we also

convert the parent matrix into an upper triangular matrix and then we go do a backward

sweep to get the values of the unknowns.

Now, same  thing  we  are  doing,  now here  what  we  are  doing  that  as  in  the  Gauss

elimination we are also making all these diagonal elements to be 1. So, once we have

done this thing, you can see that we have converted the parent equation into an identity

matrix. Identity matrix you can see that in which the diagonal elements are 1 and all the

super diagonal elements and the sub diagonal elements will be 0.

So, we have getting the identity matrix and when we get the identity matrix, now it is

very easy for us to solve for the unknowns. So, we find that x 1 will be equal to 3, x 2



will be equal to minus 2.5 and x 3 will be equal to 7. So, this way you can carry out this

particular method and you can also program it to get the solution. But as I was telling

that  it  is  not  always  possible  to  get  the  use  these  direct  methods  and  they  prove

inefficient  as  the  dimension  of  the  matrices  become  larger.  So,  we  go  for  indirect

method. So, now, I shall be going to some of them indirect methods.

And one thing I must tell you that whenever you are for actual systems, whenever you

are linearizing the equations many a times even without linearization also we start with

non-linear equations. In the sense that suppose I have an equation like this an equation

like this, that a 1 1 say x 1 square and say a 1 2 x 2 square and suppose a 1 3 x 3 square

equals a b 1. So, this is just illustration in many a times what we do if it is non-linear we

can take this x 1 into x 1, and then 1 to x 2 into x 2 and then 1 3 x 3 into x 3 equal to b 1.

So, you can see here these coefficients are themselves function of the unknown. So, this

is a also one way of treating these things, but when you do this kind of system then what

you see that you have to go for iteration because you start with some guess value of x 1 x

2 x 3 so, that you can find the values of these coefficients and then you solve for the x 1

x 2 x 3 and again you modify the coefficient values. And again you get a modified update

the value of the x minus to x 3 and this you keep on doing till you get convergence by

checking the values of x 1 x 2 x 3 in the 2 consecutive iterations ok.

So; that means, we are able to stay within this Gauss Jordan system, but in a iterative

manner we are using this system. So, now, we shall go to the another set of solutions

which are purely iterative.
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So, here we have the Jacobi method. And this Jacobi method you can see that it is a

method which depends on the reorientation or rewriting the given set of equations in

terms of each of the unknown variables; that means, if my parent equation is like this ok.

Now what we shall do is this we shall be finding the values of the x 1 x 2 up to x n from

each of the equations. Now suppose we choose that first equation we shall be choosing to

get the value of x 1, the second equation we shall be choosing to get the value of x 2 and

so and so forth.

Now, these choice of the equation to get the value of the given unknown is arbitrary and

there are some mathematical conditions which are prescribed to get those conditions. So,

whatever those things I am not going to those details, but sufficient to say is this, we find

these values of this say unknowns from each of the equations. So, for example, we want

to find the value of x 1 from the first equation. So, we write like x 1 is equal to b 1 minus

all the other terms which appear in the first equation divided by a 1 1 ok. And you can

see here that because none of the values are known we have to start with some initial

guess values. So, update the value of the xs ok.

So, here you see that we are getting x 1 k plus 1. So, this k tells us the level of the

iteration. So, suppose k is 0, k 0 means our initial guess values from that we can update

the value of x 1 ok. And now we can see that if we apply this same thing to all the other

equations, you find that we can get the value of x i for all the other equations and this i



goes from 2 to n. And in this case we find that as long as we are finding the x 1 to x n

values for at a given iteration level, we are not changing the values of the x.

So, here you see that we are sticking to x 1 to x n, we are sticking to the same values of x

which we guessed earlier ok. So, and then once we have obtained all the xs, then again

we start with the second iteration and again we put though all the x values at the second

iteration to get the values of x for the third iteration. And before we move on to the next

iteration we must check the values of x may at kth level and k plus oneth level and then

if we are not getting convergence and the convergence criterion will be decided by the

user.

So, there could be one criterion  or more than one criteria  one criterion.  So, that  we

decided prescribed by the user. So, whatever it is so, we have to keep on checking the

iteration then to update the values of x. Now this Jacobi method was found to be less

efficient. So, if modification was done and that we got the Gauss Seidel method which I

shall be talking about now.

(Refer Slide Time: 09:13)

In this method first let us see the example problem here before we go to the next method.

So, here we have the set of equations, these equations are the same as the 1 we have just

solved using the Gauss Jordan method.
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So, here what we do that we are writing this x 1 k plus 1 in terms of x 2 and x 3, and then

x 2 k plus 1 in terms of x 1 and x 3 and x 3 from in terms of x 1 x x 2. So, this x 1

obtained  from the  first  equation,  x  2  may  second  equation  and  x  3  from the  third

equation.

(Refer Slide Time: 09:47)

So, here you see that we are getting the values of updated values of the x 1 x 2 x 3 by

keeping all the values of the xs static at the kth level and this is the how we are getting

the updation.
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And with this updation now we can go for the next iteration and we get these particular

values ok.

(Refer Slide Time: 10:09)

And again we check for the convergence like we are taking the what is the fractional

change or the percentage change, we see that how much percentage change is occurring.

So, it we are finding that it is giving 12.7 percent for the x 1, then for the x 2 it is given

10.8 percent and for the third one it is giving 1.9 percent.



It shows that by choice of the particulars equation for x 1 x 2 x 3; x 3 is giving the fastest

convergence and the x 1 is giving the slowest convergence. Now you can see that if we

want to make the rates of convergence for each of the variables faster or of the same

magnitude, then we can again change these orders of the equations to obtain or to update

the values of x 1 x 2 x 3. So, this is 1 example that in this in this particular choice of x 1

x 2 x 3 expressions we are getting this kind of rate of convergence, but a different choice

of expressions for x 1 x 2 x 3 will give us a different rate of convergence. So, these we

can carry on and to get.
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Now let us go to another method which is a improvement of the Gauss Seidel and you

see  that  improvement  comes  that  when  we  are  writing  these  equations  for  the  first

unknown that is x 1, we are using the all the variables which are there for the previous

iteration level. 

But when we go for the ith value you see this is a ith x then what we are doing that, we

are using both the updated values as well as the previous values updated values for those

which we have already updated and the previous values for those we are which are yet to

be updated. So, we are seeing that for j equal to 1 to i minus 1 that is i if this is i ok. So,

these i we are doing the updated values and which are i plus 1 to n we are doing for the

previous values ok.



Now, when you are doing this we are finding that the rate of convergence gets speeded

up ok. So, this is the advantage we are getting for the Gauss Seidel method.

(Refer Slide Time: 12:29)

Now, this is the same example we are taking for the Gauss Seidel method and we see

that.

(Refer Slide Time: 12:34)

How we are doing it that for x 1 again we take the same first equation to get the value of

x 1 and here it is that we are finding the x 1 value. So, once we have got them updated

the x 1 value what we are doing? We take this updated value to get the value of x 2. So,



we are putting the updated value of x 1, but for x 3 we are taking the same value as in the

previous iteration and we update the value of the x 2 and after that for the x 3 we take

updated values of both x 1 and x 2.

(Refer Slide Time: 13:06)

So, here we have that we are getting the x 1 x 2 x 3 values for after the first iteration.

(Refer Slide Time: 13:13)

And these are the values of x 1 x 2 x 3 for the of the second iteration.
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Now, you can see that in this case that this rate of convergence of the x 3 is the largest

and all of them if you go on at repeating this thing we will find that x 1, x 2 will also go

in  at  a  faster  convergence  rate  then in  case of  the  Jacobi.  Now what  happened that

because the Gauss Seidel method was showing a better convergence characteristics than

the Jacobi method. So, and it was also easy to implement in the computer. So, we found

that  the  Jacobi  method  was  almost  abundant  and  all  this  Gauss  Seidel  became  the

popular method.

But what happen later that when the parallel computing came this Gauss Seidel method

was seemed to be not that efficient because this is a sequential method, you cannot get x

3 or x 4, unless you have the value of x 1 x 2 ok.

So, its sequential method , but when parallel computing came into picture then what we

found that by if we use Jacobi method, then each of these equations can be given to each

of the CPUs and you can get the values of all x 1 x 2 up to x n together ok. So, due to

this parallel computing this Jacobi method again got revived. So, you are going from a

sequential calculation to a parallel computation ok. So, that is why you find at present

day when if you are using go for parallelization and if you are parallel computers then

you will like to go for the Jacobi kind of method and if you have a sequential thing then

you go for the Gauss Seidel kind of method.



(Refer Slide Time: 15:08)

Now, after we have learnt a some of these equations of matrix methods to solve the

equations,  another  important  thing  is  the  relaxation  factor.  Now  the  concept  of

relaxational factor comes in order to speed up the convergence. Now you see that many a

times that if we know the direction of my solution if you can find out especially if we are

going for a linear solution.

So, if we know the direction of our solution, then we should be able to take a larger step

size ok; that  means we can be more adventurous in going leaping towards the exact

solution. So, whatever updation we are getting that we can still update further arbitrarily

to go reach the solution. And what we define that we always take the difference between

the values of the previous and the present time step.

So, this is the kind of error you can see. So, if I look at the error basically all these

methods are depending on the error. We are putting some error for and this error is taken

as the value of the x I at k plus 1th level and value of the x i at the kth level. Now you

will see that when once we do this now; that means, x i k plus 1 is equal to x i k plus this

error which we are finding at the k plus 1th iteration level. Now if we know the direction

of our solution suppose I put this in the graphical form suppose we are solving for the xi

versus t and suppose this is the solution we know we have to reach here from here.

So, suppose by our step size we are doing from here to here we are reaching 1 by 1 ok,

but now we know that because it is almost linear what we can do, that suppose even if



we go to this point we can take a push this point of further on this side and that we do by

taking some multiplying factor so, that I can push this solution further.

So, that I can after this same iteration I can go directly to this instead of going from this

to this ok. So, this is the principle. So, we are using some arbitrary factor what we call

the relaxation factor, which is kind of pushing my solution towards the actual solution

ok. So, these kind of leaping it is take a jump from the exact value which we have got

from the equations ok.

Now, this is the case when we are we are talking about the linear solution. But this thing

cannot be applied if we are going for a non-linear problem there you find that if there is

slight changes here and there it can cause a sudden we can move away from the solution.

So, whatever delta x or the corrections we are getting at a given iteration level we may

find that, applying that whole correction may take us away from the solution or cause

divergence. 

So, in that case we have to be more restrictive ok. So, instead of taking the whole jump

to  that  particular  point  what  we shall  do?  We shall  take  a  small  jump;  that  means,

whatever corrections is being offered by solving the equations we shall take less than that

correction. So, we are getting more conservative this is something like this, suppose you

are walking in a particulars room with almost blindfolded and you know that the room

has many furniture scattered here and there.

Now, before you have been blindfolded, you know that perhaps that you have seen the

place where you have to reach destination, but once your blindfolded you do not know

where the all the furnitures are scattered, then what you will do you will be bit more

cautious. So, even if you know the direction of your solution, you do not want to jump

around too much here and there because you know you are going to heat some kind some

furniture and you may not be able to reach that. So, you will take smaller steps and

slowly and slowly you will move towards the destination and once you know that you

have you are reaching their destination, then you can take a faster step size so, that you

can reach the destination quickly ok.

But on the other hand suppose you have not no barriers on your path, you know that if

you then what you will do the decide that you can take a longer step or faster step to

reach  your  destination.  So,  that  is  the  way  we  decide  that  when  we  need  to  be



conservative or when we can be more adventurous or border to choose this particular

relaxational factor.

So, you see that in this example, we if we take the standard Gauss Seidel method to give

us the solution. It need not be Gauss Seidel it can be any other method it can be gauss

elimination or any other method. So, you see that when we find that this kind of things

are there so, we first evaluate the solution from the Gauss Seidel method and we this is

the solution we have for the previous iteration level ok.

Now, what we do that, to make the exact value of the particular unknown what we do

that instead of the Gauss Seidel what we take a relaxational factor of w we take the w

factor. We take here and with w factor we put with this Gauss Seidel method and we take

with the value we have obtained in our earlier iteration, now you see that when w is

equal to 0; what it means is this we are not taking action on the present value. So, this

whole weightage is being given to the previous value and when we take this w equal to

1; that means, that we are not giving in any weightage to the previous value. We are

putting whole weightage to the 1 we have obtained from the particular solution with any

given method.

But if we take the w value between 0 and 1 that means, we are giving weightage to both

the  present  value  we have  obtained and the value we have  taken from the previous

iteration  ok.  Now you see  that  depending on the  value  of  the  w we can  have  over

relaxation or under relaxation, over relaxation means generally if we take the correction

factor more than 1, then we say it is over relaxation ok. And if we take the correction

factor less than 1, then we say we are going for under relaxation.  Over relaxation is

generally prescribed if the problem is going towards linear problem and we go for under

relaxation if the problem is more non-linear ok.

So, depending ah so, this is the way we are able to kind of artificially we try to ensure

convergence  of  the  particular  set  of  equations  ok.  So,  this  is  the significance  of  the

relaxation factor the choice of the relaxation factor is arbitrary and you need to do some

kind of experimentations while you are solving the equations, to arrive at the right value

of the iteration relaxation factor. And what also happens is this as you gone on iterating,

you will find that you may have to tune this relaxation factor to get the convergence.



One more thing sometimes researchers do is this, they find the best solution kind of by

optimization of the relaxation factor. So, you see that how much error you are getting in

between the previous iteration the present iteration and you try to minimize this error by

optimizing the value of the relaxation  factor. So,  it  the choice of this  factor may be

arbitrarily or maybe done through some optimization depending on the problem at hand.

So, that is how you see that this particular factor assumes a great importance in or the

solution, numerical solution of these equations.

(Refer Slide Time: 24:05)

So, more on this you can find in these references.

Thank you.


