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Lecture - 35
Microscopic Balance Illustrations – V

Welcome.  Today in this lecture we shall  be covering a few more illustrations  on the

Microscopic Balances.
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So, first problem we shall be considering will be flow between tapered plates. Now you

see that in many applications industrially or in our research, we find that many times the

flow does not always happen over a conduit or over a free or a unconfined surfaces. A

sometimes these flows are also confined within some plates. Like for example, we may

have a flow through 2 concentric circular plates, through which some flow is going and

this kind of flow configuration in a similar fashion you find that is used for constructing

some heat exchangers or some mass exchangers, and there we get some kind of change

in the heat transfer and mass transfer characteristics.

Also  you  find  that  this  kind  of  flow  between  2  channels  are  also  found  in  some

viscometers, where we are having some kind of fluid and we are trying to rotate one

particular plate over another. And during that we measure the stress that is obtained and

we find the from some formula, we obtain the viscosity. So, in that we will find that there



are many applications, where the flow happens through 2 plates and these plates may be

parallel or they may not be parallel.  So, they may be sometimes tapered. If you look

through the flow through some kind of nozzle or this diffuser for example, if you can this

nozzles or diffuser are used in the space shuttles to get the thrust, to lift the particular

space shuttle. Also you find that to find the velocity or flow rate you use the venturi

meters which is also kind of converging diverging sections.

In that case also you find that you have the particular flow going through this kind of

tapered surfaces ok. So, in consideration of this, the this particular problem has been

taken to figure out that how we are going to model the particular process with if the

process involves some kind of heat transfer or mass transfer, how we are going to model

the process. And so far in our earlier lecture, if you have mostly confined ourselves with

the  Cartesian  coordinate.  Now  in  this  particular  case  we  shall  be  looking  into  the

cylindrical coordinate. So, this problem is like this that, considered steady pressure flow

of Newtonian and incompressible fluid flowing through channel formed by 2 tapered

plates of in finite width.

What it means that, a pressure flow means this the flow is occurring due to some kind of

pressure gradient. As we have seen earlier like quiet flow in quiet flow. The flow occurs

not by any pressure gradient by, but by the relative motion of the 2 surfaces. So, it is

mentioned in this particular problem that it is due to some kind of pressure gradient. And

what we mean by infinite width is like this that, if I draw these plates a kind of 3D it

would look like this. So, you can imagine that we have 2 plates of like this. So, this

particular width is taken to be infinite ok. So, this is this. So, we have these 2 plates. So,

we have 2 plates like this and through which this particular thing is going out.

Now, when  this  fluid  is  moving  you  can  see  that,  there  could  be  because  you  this

tapering is there it may be assumed that there could be some kind of if I there is axis here

this here you can see that the axis over which this particular thing is there. So, these

plates have some inclination of alpha over here ok. So, this is just giving that the angle of

the tapering and this you can see that the fluid height is changing as it is moving there.

So, whatever coordinate system is being used, the origin is taken on this axis ok. The or

this should cannot show me confuse that we are not taking this as the origin, but we are

putting some axis around which as if this particular thing is as if it is rotating.



So, with this consideration we are saying that, here we have shown the z axis and r axis.

So, r is corresponding to the radial distance from this particular axis and theta is this

direction. Theta is this direction around the axis though these are theta direction and this

is the r direction is the z direction. So, in this fashion we can see that, if we the question

asked is that the fluid is being heated from the outside to maintain its wall temperature at

a constant value T f w; that means, as if you are having here we have a value of T f that

is fluid at the wall ok. So, similarly on this side also you have T f wall temperature ok.

So, this is; that means, this is a glitch that kind of condition. So, it is assumed that the

fluid is at a different temperature from the wall.  So, there will be some kind of heat

transfer from the wall to the fluid. So, derive the relevant equations to find a temperature

distribution into the distribution through the fluid. Now because the fluid is moving so,

we know that the in even if you want to take the temperature distribution, it is that you

have to consider the energy balance equation. And in the energy balance equation we

have the inertial term that is due to the flow of the fluid. So, if you want to find out the

temperature distribution, we should also know the velocity profile that will dictate the

temperature distribution.

So, what we shall  do now we shall  see that how we are going to make the balance

equation.
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So, first we shall go with the coordinate axis that we have chosen cylindrical coordinate

and here we are assuming that v r that is the radial velocity, radial velocity is in this

direction these are radial velocity direction. So, this is v r. So, this v r is taken to be a

function  of  r  and  theta  and v  theta  and  v  z  are  taken  to  be  0;  that  means,  we  are

considering a one dimensional flow. Also we are considering the liquid to be Newtonian

and incompressible; that means we are assuming that the density is remaining constant or

also we make one assumptions because nothing is given in the particular problem. So, if

it is a gas you may take the viscosity to be a function of the temperature or for a liquid

for some small range of temperature, you may consider the viscosity to be a constant, but

these are not very restrictive assumptions.

So, let us now go further.

(Refer Slide Time: 08:44)

So, here we first go with the continuity equation. Because we always know that mass

balance has to be maintained; so, we go with the continuity equation. Now you see that

in the rest of this particular problem, we shall be sticking to the cylindrical coordinate

system. So, you see that we have taken this cylindrical coordinate system the continuity

equation, and here we are assuming that there is no variation with respect to theta and the

z. So, that these 2 terms are taken to be 0 and because it is incompressible. So, we are

taking this to be 0 and this rho is taken out of the differential.



So, with this we find that we are obtaining this particular equation. And from this we find

that it means that r v r is some kind of a constant and this constant is a function of the

theta ok. So, this is this f theta signifies this particular constant this is a function of the

theta. That is why we are finding that v r theta is equal to F theta by r; that means, the v r

is going to decrease with an increase in the velocity sorry increase the radius ok. Now

after writing this particular thing for the see these will be generally used later on when

we go for the solution of these equations we will be needing this particular relationship.

Now we go for the momentum balance equation.

(Refer Slide Time: 10:25)

So,  this  is  the  momentum balance  equation  for  the  r  direction,  this  is  for  the  theta

direction and we have another for the z direction.
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So, we shall come to that later.

So, here we have the r direction, now again you see that in this we are assuming as per

the problem we are assuming it to be at steady state. So, this particular term will go to 0

and then we are assuming that it is independent of the theta or it is axis symmetric. So,

this particular thing goes to 0 ok. And this is also going to 0 because there is no variation

with respect to z ok. And then this is also going to 0 in similar fashion, this is also going

to 0 and here we have this particular thing you see that this in the problem we are I mean

saying that the v theta term is 0; that means, there is no rotation.

Now, you can look looking at this particular equation understand that, this is something

to do with the centrifugal force that is acting on the fluid in then and you know that

centrifugal force always acts radially ok. So, that is why you find that whenever you are

writing the radial momentum balance in the cylindrical coordinate, you always have this

v theta square by r term that to take care of the centrifugal force. But in this case this is

absent  because  as  per  the  question  this  v  theta  component  is  0  ok.  So,  and we are

assuming that there is no body force. So, this particular thing in the radial direction is

taken to be 0 ok. And so, we are left with what? We are left with well this particular thing

v r dou v r by dou r, then dou p by dou r and this mu this thing ok.

Now, you can see that this dou v r by dou r if you go back to this continuity equation you

go to continuity equation.
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What you find that, dou v r is something like minus F theta by r square ok. So, this is dou

v r by dou r and then you find that, F theta by r is nothing, but. So, this is dou v r by dou

r is nothing, but minus v r by r. So, with all this we find that this dou v r by dou r will

give you minus v r square by r and here we have this particular term. So, you can take

put this you can expand this term and you will get this particular type of equation now

you see that what is happening that in your this pressure drop is due to the viscous force

ok.

And next we come to the theta direction. Now even though there is no theta component

of the velocity, but you will find that in the theta direction there could be in this case you

see that this is going to 0 here, this is going to 0 here, this particular thing going to 0

here.
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So, all these things will go to 0 and here you find another term is coming which I am

explaining. So, you will find that this particular term is signifying the coriolis force. Now

coriolis force is something which happens whenever there are 2 missions combined one

is radial motion and one is the theta direction motion means. So, when you go to a merry

go round suppose you know merry go round and we are walking on the merry go round,

you will find that you will be experiencing a force that will try to not just throw you

away, but also kind of either take you along the circumference direction. That means, if a

liquid is flowing over a rotating surface radially, then a liquid will you may find that as if

it is getting spread over the particular surface ok.

And this  particular force is called the coriolis  force.  So, this is the centrifugal  force,

centrifugal force and this is the coriolis force ok. So, these 2 forces come into picture

whenever you are having a motion in the theta direction and of course, in this case all

these v theta components are 0. So, there will not be any kind of coriolis force and we

see that only thing what is remaining is the this particular term ok. And if we take that v r

is also constant with respect to theta, then this will also go to 0 so, that there will not be

any kind of pressure drop along the theta direction ok. But in our problem we are taking

that v r is a function of both r and theta. So, this will be a nonzero value. So, this will not

be equal to 0 that is why we are we are have to even though v theta is 0, but due to this

particular  component  we find  that  we there  will  be  a  pressure  drop along  the  theta

direction.



Now, let us come to the other direction that is a v z term. Now in this case v z you see

that there is no term in this which is nonzero because see if you look at v z component in

any way 0. So, all these things will be 0 and here you will also find that there is no v r

term ok. So, there is no v r term. So, actually everything is going to be 0 and there is no

we are also considering that there is no body force. Even though in the z direction there

could be a hydrostatic gradient due to this gravity, but looking at the particular problem,

we may say that the m the height of the liquid with confined within these 2 plates may

not be substantial to exert enough hydrostatic gradient ok. With that logic we are saying

that dou p by dou z equal to 0, but again you minded that this hydrostatic pressure drop

will depend on the height of the fluid.

So, if you have substantial height of the fluid, then you can consider that particular thing

and then it will be something like this it will be minus dou p by dou z equal to rho into g

and from this you can get P equal to rho g h. So, if this h is very very small, then you can

neglect the effect of the hydrostatic head. So, this is all about the momentum balance

equation and now you can see from these equations you can find the velocity. Now this

velocity will be required to solve for the temperature distribution and here you have it

that you have now write down energy balance equation. So, on this left hand side you

have the inertial terms and you see that again v theta is 0, v z is 0 the steady state. So, the

that is this dou t by dou t will be also 0, then we are assuming that there is no gradient

with respect to theta and z. So, these 2 terms are also 0 and in this case we are neglecting

any kind of viscous dissipation. So, we are taking this particular term to be also 0.

And in also there are no reactions in this particular system. So, there is no other source

term associated with this particular case. So, with these assumptions we find that the dou

t by dou r is coming like this; that means, the gradient of temperature along the radial

direction will be dictated by this and here you see that this alpha is the thermal diffusivity

that is the k by rho c p ok. So, this is the equation which we wanted to derive to find out

the  temperature  distribution  within  the  fluid.  So,  you  see  that  from  this  particular

problem even though our main concern was to get the temperature distribution and which

was to be obtained from the energy balance equation; however, due to the involvement of

the velocities or the inertial forces in the energy balance equation, we need to go to the

momentum balance and also the continuity equation.



So, that is how you find that, that or the whole problem becomes a bigger problem even

though the concern is only for the temperature. So, if you can assume these velocities to

be constant there is no gradient, then we need not solve the momentum balance we can

just go directly to the energy balance equation.

So,  I  will  be  stopping  here  and  as  you  can  see  that  as  for  the  given  problem,  the

temperature to solve this problem we need 2 temperature boundary conditions. So, what

we can do that,  we can  take  one  boundary condition  near  the inlet  and 1 boundary

condition at the outlet and because we are maintaining the temperature constant at the

wall. So, we may say that the whole at the at the at any axis, we can assume that there is

a good amount of mixing along the axis. So, the hole temperature is constant along the

radial sorry the z direction.

So, for this particular problem solve you can give 2 conditions, one you can specify at

the inlet and you can say another boundary condition you can specify at the outlet of the

particular  channel  ok.  So, that  is  how you can solve this  problem, Next  we go to a

problem which is concerning the mass transfer. In this particular problem you see that the

we have to consider the evaporation of a volatile component liquid A into a pure B in a

tube of infinite length, the liquid level is always maintained at z equal to 0.

It is something like this that suppose this evaporation problem will find many a times

like from the ponds, from the river, from the ocean you get the liquid is evaporating and

in that case we say that there is infinite means that if I consider the atmospheric to be of a

infinite length ok. So, what happens that, this particular liquid goes into the atmosphere

and nearby the interface there will be some gradient, but as we move away from the

surface of the liquid, we will find that this gradient in this concentration of the particular

species which is evaporating will also come to constant.

All for example, you find that when we are trying to dry some kind of material or clothes

what we do that, we find that in the we put some fan to make it a dry faster and why we

do that? Because when this particular component is evaporating from the weight surface,

it forms a mass transfer boundary layer near the surface and that creates a resistance to

the mass transfer or evaporation.

Now in the  more  the  humidity  in  the  atmosphere,  we find  that  it  takes  longer  time

because this  particular  boundary layer  thickens.  Now why we run the fan is  that  by



running the fan we are trying to destroy the formation of the boundary layer over the rate

surface. So, that we can maintain the large enough gradient for the solute to or the in this

case water to go from the weight substance into the atmosphere.

So, this is the kind of problem we consider and we see those kind of how to model those

kind of problems. So, here we have to develop appropriate balance equation to determine

the concentration profile of the evaporating component A, and the assumptions taken out

that  temperature pressure remain thus constant and vapor of A and B from the ideal

mixture. It is not a very restrictive assumption, but by putting ideal mixture we just we

are just trying to simplify our analysis. Then diffusion coefficient is taken to be constant

species  B  is  insoluble  in  A.  It  is  something  like  this  that  suppose  when  water  is

evaporating into the atmosphere,  we assume that  the components in the air  that is if

majority of them is nitrogen and oxygen, we assume that this nitrogen oxygen are not

coming  back  into  the  water.  So,  from practical  purposes  we  assume  that  the  air  is

insoluble in water ok. So, that is the meaning of this particular assumption the overall

concentration of the species remains constant.

Now, let us go.

(Refer Slide Time: 24:48)

Now, if  you  look  at  a  continuity  equation  you  find  that  we  are  assuming  only  the

movement in the z direction that is in the axial direction. So, we are for a timing we are

not considering the spread of the solute or in the theta direction. So, we are find then



having that dou v z by dou z equal to 0 ok. And here we are this v z is the z component

of the molar average velocity, because molar average because we have both A and B

components together because even though A is going into the thing, but once is go into

the B phase, then we find that both A and B combine and that the velocity of the A will

be dictated also by the presence of the B and these things are covered in more detail in

the mass transfer analysis. So, for the timing I am not going into those details.

So, from this equation we find that v z star can be written in this particular fashion ok.

And then we find that these v z star is the velocity v z at z equal to 0 ok,and then we go

for the species balanced equation. So, this is the overall mass balance the species balance

equation and a species balance again we take the inertial term that is this inertial term

and this is due to the diffusion term and there is no reaction between A and B. So, that is

why we are writing that dou x by dou t equal to this and you understand that, there is dou

x A by dou t here, it is because we are assumed that the overall constant remains the

same. So, this it is essentially dou C A by dou t, but then this C A is taken as the overall

concentration into x A ok.

So, this is taken to this constant.  So, this  is going out of the differential  and we are

having only x A over here and x A over here. So, this is the basis of writing in terms of

the mole fraction. And this nabla x A as you know this nabla is nothing, but the gradient

of x A. So, nabla is you know that this is say in the Cartesian coordinate it is dou x then

ok. So, this is nabla. So, this nabla into x A gives the gradient of x A ok. And this one is

the delta square nabla square meant it  will  be the scalar. So, this  is this is the nabla

square is dou square by dou x square plus dou square by dou y square plus dou square by

dou z square. Please understand we are not writing in I j k over here because this is a

scalar ok.

So, this is how we are able to set up the material balanced equation for this condition. So,

here we see that, when I am writing those x that should not be confused with the x A that

is being used to represent the mole fraction that you should be careful about. So, this x A

is the this x A is the mole fraction this is the mole fraction ok. And when we are writing

only  x  that  is  the  signifying  the  coordinate  direction  this  should  not  be  confused.

Sometimes this mole fraction is also represented in terms of y A ok. So, generally what

happens that when we talk of the gaseous phase, we put in terms of y and when we talk

about a liquid phase we put in terms of x. So, these are some conventions.



So, now let us see that this particular problem would be completely defined only when

we have the initial condition and the boundary condition, because here we find that this

particular  equation  has  an unsteady state  term and also it  has some differential  with

respect  to  the  coordinate  direction.  So,  let  us  now see  how we  shall  be  specifying

theinitial condition boundary conditions.
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So, here we have the initial condition that as if at in the phase B there is no exit to start

with. So, we are putting x A equal to 0 for all z and understand this, this z is being taken

from the interface between A and B and if this x z is moving inside the B from the

interface of A and B it is moving inside the B ok. So, that is the meaning of that all z and

then for the boundary condition we are assuming some kind of interfacial concentration,

interfacial concentration of A at the boundary that is given by x A is 0 and that is the

meaning of z equal to z 0 and for all t and for z equal to infinity; that means, at a large

distance from the interface, we are assuming that there is no x a; that means, it is going

to 0 ok.

So; that means, if we can without any solving, we can say that if we plot suppose we are

plotting. So, this is z equal to 0 and this is z is going to in this is z direction over this is

straight line. So, if we are seeing the see the concentration we can check that this is as if

going to it is it is some x A x A 0 value here and it is going to a 0 value this is. Now you

see  that  in  this  particular  expression  do  not  confuse  this  x  A with  the  coordinate



direction, this x A with this subscript signifies it is the mole fraction of component a and

in the nabla operator also we wrote the x, but in that case the x is the direction of the

coordinate and many times in the literature you will find that we are using either x or y to

represent  the  mole  fractions,  but  generally  these  x and y will  be accompanied  by a

subscript ah. So, that will make it different from the coordinate axis.

Now, this problem can be solved only when we have the appropriate initial and boundary

conditions and because it is a unsteady state situation. So, we need some initial condition

and in this particular thing we find that the we have the second degree in the derivative,

and because it is one dimensional in the z direction. So, we need 2 boundary conditions

in the z direction.  Now in this case you see the z is taken to be the interface where

between A and B, and the positive z direction is taken to be going inside the B phase

from the interface ok. So, with this considerations let us go to see how we are going to

specify the initial condition and boundary conditions. So, initially at t equal to 0 we say

that  there  is  no  A present  in  the  B  phase  or  in  the  gaseous  phase.  So,  with  that

consideration we take that x A is equal to 0 for all z.

And for the boundary conditions we say that at the interface that is at z equal to 0, we

have x A equal to x A naught some specified value and for all t more than 0. And then the

another condition we take that at z equal to infinity that is much away from the interface,

the amount of the A is taken to be 0; that means, that is it is nothing is present. So, this

can be all  these things  can be represented like this  that  if  I  consider  that this  is  the

interface this is the z equal to 0, and from here I am count this is the B and this is A is

coming from here and this  is  the z direction  ok.  So, here we are taking x A at  this

position we are taking x A equal to some x A naught x A naught.

Now, here you understand this is that when I putting x A naught it means that this A is

not a pure component it is in a mixture and we are assuming that other than A no other

component in the liquid mixture are volatile. So, only A is the only volatile component

which is going into the B ok.

Now, suppose this is this I also take as the suppose this is I take as the coordinate axis for

C A sorry or x A C A on x A suppose. So, if I if we make the profile of the x A. So, we

will find that from this suppose this is z z equal to 0. So, we find the profile will look

something like this ok. So, it is C A is 0 here. So, and this is the value we call it x A x A



naught ok. So, this is how and this profile will be a function of time this was a function.

So, you will find that you at different times you will have different profiles like this ok.

So, this is the way we visualize that this is a way this profile of the A component will be

developing with time.

So, this is a qualitative understanding of the concentration distribution of a component

which  is  evaporating  in  another  component.  So,  with  this  we  can  complete  the

formulation  of  this  particular  problem  to  get  the  concentration  distribution  of  n

evaporating component.
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These  are  the  references,  which  you  can  consult  for  more  detail  of  this  particular

processes.

Thank you.


