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Welcome,  after  learning the  fundamentals  about  the balanced  equations  how we can

make  the  balanced  equation,  what  kind  of  assumptions  we  can  do  and  what  is  the

importance of the various types of assumption and then how to non dimensionalize the

balanced equations. We shall now take up many examples of this balanced equations so,

that you can understand that from various fields like momentum transfer, heat transfer,

mass  transfer  how  you  can  make  the  balance  equations  and  how  you  can  non

dimensionalize them also. So, first let us go with the microscopic balance equations and

illustrate them.
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So,  here  we  have  the  liquid  flow over  inclined  surface  and this  is  a  very  common

example you find that in many a times we have the situations where the liquid is flowing

over the inclined surfaces, ok. And this is inclined it has been taken in general, but you

understand this the angle of inclination will change the nature of the flow; that means,

the angle of inclination can vary from 0, if it  is, is it  theta you can see this angle of

inclination.

So, if it is goes to 0, it means that you are having the horizontal flow and if this goes to

90 degrees  it  is  a  vertical  flow. So,  in  general  we can take this  angle  of  inclination

somewhere in between 0 and 90 degree to a situation where it is neither horizontal nor

vertical, it is somewhere in between ok, but you can extend this for any situation. So,

here we have the liquid flows down on inclined plane surface in a steady fully developed

laminar film of thickness h.

Now, steady you understand that the particular variable that is in this case the velocity

does not vary with time at a given location, but location to location it may vary that is the

meaning of steady state. And fully developed is that you know that whenever a fluid

enters  over  a  particular  domain,  it  initially  takes  some time to develop,  because  the

boundary layers are keep developing as the fluid enters over a surface. Because, before

the fluid has is on a on the it goes to the particular surface it might be having some

different resistance to it flow, but when it goes to another kind of surface of interest, we



will find that because of the viscosity effect there will be a drag force on the fluid and

that will cause the boundary layer to form over the surface. And we what we say the

developing flow region is the region when the boundary layer is growing, ok. And once,

the boundary layer has reached the maximum thickness after that  it  will  remain at  a

constant value and we call this a fully developed flow, ok.

So, in the fully developed flow and in the entry region or the developing region, we have

a  result  slightly  different  types  of  equations.  So,  in  this  particular  example,  we  are

considering a fully developed flow. And the flow is laminar again you know that what is

laminar, what is turbulent flow? That laminar is supposed to be a kind of a very well

defined flow and as you know that laminar means we assume that the flow is taking

place as if layer by layer, ok.

So, in case of laminar flow and we have certain values of the drag forces. And in case of

turbulent so, we have some other ways of taking care of this velocity profiles through the

drag  forces.  So,  that  is  how  we  are  distinguishing  that  nature  of  the  flow  for  this

particular situation. And it is assumed that the thickness of the layer is h, ok. So, as you

see that is the h is a thickness of the layer, u you can see it is going in this direction and it

is changing from the surface of the this and to do that as you go original surface it is

more increasing, ok.

And here is the width of the per to the width of the particular surface b, ok. And here you

can see that how we choose the direction this, this is the flow direction is taken to be the

x direction and the perpendicular to this is taken to the y direction; that means, we are

assuming on the z direction, it is a infinite extent; that means, there is no effect of the

boundaries on the fluid flow in the z direction that is how we are reducing a 3 d situation

to a 2 d situation over a 2 dimensional situation.

And if the this plane width as I say is b, we have to derive expressions for the velocity

profile, the shear stress distribution, volumetric flow rate, average flow velocity and film

thickness in terms of the volume flow rate, ok. So, these are the things we have to find

out how the velocity varies as we move away from the surface then the what is the shear

stress  on the fluid  at  the  surface  then  what  is  the volumetric  flow rate,  the average

velocity even though the velocity is changing, but for the average velocity and then the

film thickness, how the film thickness varies as the flow rate changes.
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So, let us make some assumptions to do this, we assume that it is a steady flow. So, that

all the time derivatives are taken to be 0, then we say that the fluid is incompressible that

liquid  for  liquid,  we can  always safely  assume it  to  be incompressible.  So,  that  the

density becomes constant. Then we say that there is no flow or property variations in the

z direction so, that the z direction and velocity is w which is taken to be 0 and all the

derivatives with respect to z are taken to be 0. And as we said that we are assuming fully

developed flow and so, there is no property variation in the x direction. So, we take all

the derivatives with respect to x to be 0; that means, everything is now varying to y.
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 So, first we go for the continuity equation, as I told you earlier continuity represents the

mass balance, and this is the total mass balance. And because we have assumed it to be

incompressible so, you will find that the rho has been taken the density has been taken

out of the differential, ok. And because of steady state assumption the dou rho by dou t

also goes to 0. So, because of this, we find that we are having dou u by dou x plus dou v

by dou y plus dou w by dou z equal to 0.

And as per the assumptions 3 and 4, we can neglect these two terms and we they are

coming to 0 for the assumptions. These here we show the value of this term and this in

the parenthesis, we will show the assumption which has been used to get these values,

ok. And now, we have this equation the because of this we find that dou v by dou y all to

0; that means,  v component  is  not changing where within the y direction and v is a

constant, ok.

So, since we know that because no slip condition,  no slip means there is no relative

velocity  slip  is  the  relative  velocity.  So,  there  is  no  slip  means  there  is  no  relative

velocity  between  the  liquid  and  the  surface  at  the  surface;  that  means,  because  the

surface is stationary. So, the liquid will also be stationary, ok. If the surface is moving

with some velocity the liquid will also be moving the same velocity at the surface. So, in

any case we find that the slip velocity is 0.



So, we are putting that v equal to 0 at y equal to 0. And now, because it is 0 at y equal to

0 and v does not change. So, it means v does not change be remains 0 irrespective of the

position in with respect to all x y z it is having a 0 velocity. So, we are able to neglect the

v component of the velocity.
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So,  that  is  how, now  we,  this  is  the  3  dimensional  Navier-Stokes  equation  for  the

Newtonian fluid and here Newtonian, because here we are taking this mu that is mu as a

representation for the stresses, ok.

So, here we have these equations which you can find from the my earlier lecture or from

any other standard book. And this particular equation, in this equation you see this is the

unsteady state  term, these are the convective term,  these are the pressure differential

pressure force, this is the shear stress term and these are nothing, but the body forces.

Here the g does not necessarily mean the gravity, but it incur encompasses all kind of

gravity and body forces, ok. So, that this will g is the body force per unit volume, ok.

So, now you see that because of assumption A 1, we are able to put everything 0 that is

the steady state assumption, ok. And one by one we take care of each of the assumptions

and we see the how we can reduce these equations. Now you can see here that because of

assumption three we are able to make many of the terms to 0, ok. So, you can see that we

when the terms goes to 0 and this next we come to other things also go to 0, because of

assumption 4.



So, you can see that if you take care of these equations one by one then we are able to

reduce many of the terms to 0 and this as I said that we also assume that anything in the z

direction is 0. So, that is how we are able to put all these things as 0. Now ultimately,

what we reduced with you can see that in this equation, we are having we shall be now

seeing this equation that in this equation we are having this and this term, because we

have we have this term and in this we are going to we have this term, ok.

Now, again you see that this particular thing goes to 0, because of the assumption 5 we

have made, in the y direction that is nothing like thing and we have seen that the v was

constant as we have found earlier from the continuity equation. So, this also goes to 0

and we also found that v is 0, ok. So, from that point of view this is also going to 0.
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Now, after that as I just told you that you can see that these are the equation this is we are

getting from the x direction momentum balance,  this we are getting from the y dash

momentum  balance.  And  now, because  this  we  found  that  this  is  to  be  0  from the

continuity equation, and this we have assumed 0 from our assumption that if there is no

change in the z direction. So, all these things are coming to 0 it means what that u is a

function of all the y; that means, u is not changing along the x axis, but at a given by it is

it is just function is changing well.

 And from the as we go away from the surface it is changing, ok. So, that is how you

finally, deduce that use a function of on the right. So, that now this dou u by dou u square



may be written in terms of the total differential that is we are putting dou to d, ok. So,

that is how we are getting from a partial differential, we are getting in total differential. 
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The rest of the things is like this that now, because the body the only body force we are

considering is due to the gravity here. So, we, we can write that because of inclination,

we take the component along the along the flow direction and the perpendicular to that.

So, we take in the y direction, we take that component and that is how we are getting this

sine theta over here, ok. So, g sin theta we are writing. And then we can integrate it

easily and after integrating we find we are getting this particular equation c 1 and again

we can integrate second time and again we get another equation.

So, this particular equation you can see it gives us that how the u is changing as we go

away from the particular surface, ok. And these c 1 and c 2 values have to be found out

from the boundary conditions. And because here second degree equation we need two

boundary conditions, ok.
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So, let us see the boundary conditions as we said that we assume no slip. So, at y equal to

0, we assume that this u is taken to be 0. And then at this liquid free surface, the free

surface of liquid we say that there is no shear. Now no shear means suppose the liquid is

in a in the air suppose so, air has such a low viscosity that we assume that the air does

not make enough shear on the liquid. On the other hand suppose you have a situation

where  there  are  two  liquids  flowing  one  of  the  other,  you  can  always  have  some

situations like this, if you have two immiscible liquids suppose. And they are flowing

together the right immiscible and with different density suppose oil and water, ok. 

So, water will be at the bottom on top of that always be there and there could be situation

that the two fluids are flowing and at the interface because oil and water will be having

some comparable viscosities. So, because of that there could be some there a shear force

at the interface between these two liquids. So, in that case then, we have to give some

value to the shear force, but if we have just say a liquid and it is just a gas, gas has very-

very less viscosity than a liquid. In that case we can safely assume that the shear stress at

the free surface of the liquid to be 0. So, with that assumption we say that just that shear

stress is nothing, but the mu into dou u by dou y. So, this mu into dou u by dou y is taken

to be 0.

So, with, with that assumption we are saying that at y equal to h that is the thickness of

the  liquid  that  is  h.  So,  we  assumed  that  this  shear  stress  is  0.  So,  with  these  two

boundary conditions, we are now able to find out the values of c 1 and c 2. So, we see

that c 2 is coming to be 0 and c 1 has this particular value, ok.
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Now, putting these values of c 1 and c 2, we are now finding that this is the expression

for the velocity of the liquid, ok. Now, once this is the first part of the question and this is

this gives us the velocity profile over the particular surface. Next is to find out the stress

distribution.  For  the  stress  distribution,  you will  know that  we have  to  find out  this

particular value the stress is given by the Newton’s law that is mu d u by d y and now we

differentiate it with respect to y and we find the value of the stress, ok. And you can see

that how the stress varies from the surface of the solid surface to the height of this thing,

ok.

Now, we will then see that from here you can see here easily that when y equal to 0; that

means, you are right on the surface, you find that you are getting sine theta into h; that

means, we are getting the maximum shear stress on the surface. On the other hand when

y becomes equal to h then you are getting this to be 0; that means, as you move away

from the surface the shear the stress distribution the stress becomes less and less and it

becomes 0 at the interface or the surface of the liquid. And also you can see how the

variation of theta affects.

Now, if you see that if theta is 0; that means, you have a horizontal surface what we will

find that they this sin 0 degree 0 degree is 0; that means, you are not getting any stress.

On the other hand when this theta becomes a vertical  surface your theta becomes 90

degree then sine 90 degree is 1 ok; that means, you are getting the maximum stress on



the surface, ok. So, this also you can see that how the inclination will affect your stress

value.
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Next we come to the determination of the volumetric flow rate. Now volumetric flow

rate as you know it is the product of the velocity and the cross sectional area. Now in this

case the velocity is a function of the position the y. So, how do we find out this total flow

rate? So, in this case what we do we first take a slice dA over that we make the u; that

means, a small slice dA and in that u is entering, ok. So, u dA becomes the volumetric

fluid within that small slice. And when we integrate it over the whole cross sectional

area, we get the total volumetric flow rate.

So, that is how we are doing this particular analysis that first u dA is the volumetric flow

rate within the small slice dA. And, then we are doing over the whole area cross section

of the area we get the total volumetric flow rate. And this cross section area is nothing,

but the b into dy, if you look at the particular situation the b into dy is the cross sectional

area and b is a constant the width the constant.

So, the only variation is with respect to y. So, that is how you find that you get this dA is

nothing, but b dy, ok. And this y is again varying from 0; that is surface to the interface

that is h, height, the thickness of the liquid layer, ok. Now it becomes now easy, you

simply put the expression for u here and integrate it with respect to y and with the two

limits and you get this particular value of the cube, ok.



Now, again you can see here what you see here that again this Q will change with the

theta it means that when you have 0 degree Q is reduces to 0, ok. When this is 100

degree you are getting the maximum flow rate, ok. So, here you can see that how the

inclination also gives us the volumetric flow rate. 
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Next we come to the average flow velocity, you can average velocity is easy that total

volumetric flow rate divided by the total surface area. And that we put the simply the

total surface area is nothing, but b into h and the total vomited fluid we have just found

out and from that we get the average flow velocity.

Again you can see the effect of the theta here and the film thickness is you can see that

you just  rearrange this  equation,  you can  find that  how the thickness  film thickness

changes with the volumetric flow rate. And you can see the thickness change as the cubic

root of the volumetric flow rate, ok. So, these are some of the ways you can, you can see

that  how  you  can  find  many  of  the  parameters  of  practical  importance  from  the

momentum balance equation. 
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Next we go to another example. In this we are considering the laminar flow in another

space of rotating cylinders. Rotating cylinders means here we have a situation, situation

that a liquid is contained in the annular gap between two vertical concentric cylinders,

ok. Now you can see that these two cylinders are there and in between the annular space

there is some liquid which is shown by some shadow, ok. And here we have given the

radius of these two cylinders. The inner, inner radius is the R1 and outer reduces R 2.

And from here we are taking the origin this is a z direction this is the R direction and this

is a theta direction, ok.

So, for this particular geometry, we are choosing a cylindrical coordinate and what we

are to find out, we have to find out the velocity profile, the shear stress distribution and

shear stress at the surface of the inner cylinder. The thing is this the inner cylinder is

stationary  and  outer  cylinder  is  rotated  at  constant  speed  so;  that  means,  there  is  a

relative motion between these two cylinders and this kind of flow is called a Couette

flow, ok. So, we are having a Couette flow situation and is the Couette flow, ok.

So, this is the kind of flow whenever we have this relative motion, ok. And this kind of

situations,  we may find in some kind of bearings we have this kind of situation,  ok.

There is a relative motion. So, let us see how we are going to analyze this situation. 
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Again we make these assumptions that steady state flow in incompressible then no flow

in the variation in the z direction.  So, vz and dou by dou z are 0 and circumference

symmetrical that is called what we call the Axisymmetric.

So, when whenever we have this kind of situation, we call it axisymmetric. So, this is

symmetric along the y axis that is the no variation along the as we move throughout to

the direction, ok.
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With these assumptions now we go to reduce the various equations. First again we go

with the continuity equation, ok. So, now do you see that because it is a steady state so,

we are taking this time derivative to be 0. And because of excess imagery we are taking

the theta derivative is 0 and as we said that there is no variation in the z direction so, this

is 0. So, what we reduced with we are reduced with this particular equation. And again

you can see that dou rho rv by dou r is 0 from this continuity and dou vr by dou theta is 0

because of axisymmetry and dou rho rv by dou z is 0, because the assumption that there

is no change in the z direction.

So, with all these things we find that r v r is a constant so; that means, is a constant

means  now let  us  see that  this  v  r  is  having a  at  this  r  equal  to  0 and now please

understand this r is taken from the outer surface of the inner cylinder, ok. So, in this case

if I, if I look at the cylinders, if I draw these cylinders, ok. So, these are two cylinders.

So, we are our interest of domain of interest is this is our domain of interest, ok. This is R

1 and this is R 2. So, our we are concerned with this particular thing, ok. 

Now, in this case we find that this c suppose this is r equal to 0 and this is r equal to some

r which is nothing, but the difference between these two R’s, ok. So, in this case we had r

equal to 0, we are taking because this cylinder is that it is not moving, it is not rotating.

So, that is why we are saying r vr is 0 that by, by the no suit condition. So, you find that

this r vr is a function of only it is, it is just, it is independent of r theta and z. 
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Now, with this now we consider the momentum balance equation. Again we are going to

reduce the various terms based on the various assumptions as we have done in our earlier

problem. So, I have written that how we are reducing the various terms to 0 based on

which kind of assumptions, I am not going into the explanation of these; you can easily

correlate it easily. And now you can see that slowly and slowly we are able to reduce the

three dimensional equation, ok.
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Now, all these after all doing this then what we do we find that we are getting all these

equations.  So,  this  is  the  Radial  direction  from Radial  direction  momentum balance,

these  are  azimuthal  direction  momentum balance  and  this  is  for  the  Axial  direction

momentum balance. So, this gives us the first part. Now let us go to the second one. 

And here you can see that because this incase of this where this v theta v, because theta

symmetry is there. So, v theta we find that v theta is a function of only r, because dou v

dou theta is 0, axisymmetric case and z now variation has been taken 0. So, v theta is

function of only r so; that means, the rotational velocity with the will be changing from

the inner cylinder to the outer cylinder. 
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And one more thing I should tell that in this z direction what we are having this pressure

is varying in the z direction. And this is due to the hydrostatic head of the particular fluid.

Now coming  back  to  momentum balance  equation,  we have,  we  have  once  we are

considering  as  per  the  particular  solid  problem,  we  are  only  considering  the  theta

direction, because we have to find a shear distribution, ok.

So, here we are doing the mathematics for this that we know that this is 0; that means,

this particular thing is a constant c 1 and then we find that we are doing mathematics,

here we are just multiplying by r. And then we can integrate it and integrating we are

getting this particular equation. Here again we have two constants of integration which

may be obtained by the, by the boundary conditions. 



(Refer Slide Time: 28:17)

So, here we have the boundary conditions that at the inner cylinder that that is the inner

surface the outer cylinder, we have the omega R 2 is the velocity linear velocity at the

inners of the outer cylinder and this is the outer surface of the inner cylinder, we have the

v theta to be 0 no slip boundary condition. So, this will be there is a slight correction

over here, it is basically the inner outer cylinder and this is the inner cylinder, ok.

So, these corrections have to be made. So, with these boundary conditions, we can now

easily find out the values of the c 1 and c 2. Once, you find the values of the c 1 and c 2

it is now very easy to determine the other variables that have been asked in the problem. 
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So, here is the variation of v theta with r. So, here is the variation of v theta with R and

here is a stress distribution that dou tau R theta is nothing, but this particular expression.

So, you get the, differential of v theta by r and by mathematical manipulation you get the

stress distribution along the Radial direction. 
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And this is that at the surface of the inner cylinder r equal to R 1. So, that you get at the

surface of the inner cylinder this is the stress you obtain. So, this is quite now simple

once we found the velocity distribution after that it becomes really simple to find out the

shear stress distribution.
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So,  these  are  the  references  which  you may  refer  to  get  more  explanation  of  these

problems.

Thank you.
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