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Lecture – 10
Macroscopic Balances

Welcome. Today, in this lecture, we shall be doing some solutions to some problems on

based on the Macroscopic Balances. 
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So, first we will take up a problem on the energy requirement to heat up ice to water.

This is a problem which you might have done quite regularly in your school days, but we

shall be looking into it from the angle of setting up the various equations, because this

kinds of equations are always necessary for energy balance problems. So, we will find

that the energy requirement for such kind of conversion of phases come, as some kind of

source terms in the energy balance equations.

So, here we have to find out the heat energy required to convert 100 kg of ice from

minus  5  degree  centigrade  to  200  kg  of  steam  at  200  degree  centigrade  and  1

atmosphere. So, first to do this problem, we have to understand the thermodynamics state

of ice and the steam. 
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So, here you have to refer to this  phase diagram and we know that  minus 5 degree

centigrade is below the freezing point of water at 1 atmosphere. Similarly, 200 degree

centigrade is above the boiling point of water at 1 atmosphere. So, you see that in this

particular thermodynamic diagram, we have these three curves, which are denoting the

phase change curves. So, this is the condensation curve, this is the fusion curve and this

is the sublimation curve.

And here we have triple point, and here we have the critical point, and this is for water.

And we know we see that our temperature lies somewhere on the right hand side of this

100  degree  centigrade  at  1  atmosphere  and  the  temperature  of  the  ice  is  below the

freezing point. That means, here somewhere it is 0 degree centigrade so ice is somewhere

here at 1 atmosphere ok. So, we have to go from the solid zone to the superheated vapor

zone. 

So,  in  this  case,  we  see  that  if  we  plot  the  temperature  versus  our  heat  energy

requirement, we see that when we start heating up the ice, it undergoes various changes

in its phase. And during each of these changes of the states, what we find that we need

different types of the heat energies. So, first the minus 5 degree centigrade ice has to be

first  heated  using  sensible  heat  up  to  0  degree  centigrade.  And  perhaps  you  know

sensible  heat  means  that  heat  that  can  be  sensed by the  thermometer  through some

temperature change ok.



So, during this point from minus 5 degree centigrade up to 0 degree centigrade, we need

some heat energy. And then once it reaches 0 degree centigrade the phase transformation

will occur. So, during this time there will not be any change of the temperature while the

ice will be melting.  And in this case, we shall  be using the latent heat of melting or

fusion. After all the ice melts then what happens, it will now be again further increasing

its temperature.

Now, it will be water here. And again we shall be needing the sensible heat to increase

the temperature of water from 0 degree centigrade to 100 degree centigrade to get the

saturated  liquid.  And once it  goes to  saturated  liquid,  then again  we find that  phase

change will occur at constant temperature and during this period we shall be using the

latent heat of vaporization or condensation.

 Once all the liquid has got transformed into the vapor, we get the saturated vapor state.

And further addition of the heat energy will result in the increase in the temperature of

the superheated vapor. And during this particular process, we shall be again using the

sensible heat.  Now, to find out the total  amount of heat energy required,  we have to

simply add up the heat energy required at each of this processes. 

(Refer Slide Time: 05:01)

So, let us see how we do it first we see that heat energy required to raise the temperature

of ice from minus 5 degree centigrade to 0 degree centigrade by sensible heat transfer

this is the process AB in the diagram. So, heated here Q A B that is the heat energy



during the process A to B, we have the mass of the ice then C p that is specific heat of the

ice, and the delta T ice is the temperature difference of the ice.

So, we put all the values given in the problem and this value we get from some data

source.  And here  we have  the  delta  T ice  is  the  final  temperature  minus  the  initial

temperature. So, this is 5 degree centigrade. And so, we can find out Q A B by putting

this values and this is the value of the sensible heat required to heat up the ice. Next we

come to the phase transformation of ice to liquid water. So, here we need the latent heat

of vaporization for this we simply need to multiply.

The mass of the ice with the enthalpy of vaporization, enthalpy of melting and in this

case this s is signifies the transformation from solid to liquid state. Again putting these

values here we find this is the heat energy required to melt the ice to water. And here we

can  see  the  latent  heat  is  much  more  the  sensible  heat  it  is  always.  So,  generally

whenever there is some moderate amount of temperature change, we find the latent heat

contribution is much more than the sensible heat contribution.
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Now, next  we  come  to  water.  In  this  case,  now  the  sub  cooled  water  at  0  degree

centigrade will be heated up to get the saturated liquid water at 100 degree centigrade at

one atmosphere pressure, and here we are using the sensible heat transfer. So, here it is

computed by multiplying the mass with a specific heat of the liquid water and the delta T



water  please  note  that  we are  assuming the  specific  heats  to  be constant  within  the

temperature range.

So, for ice, for water, for water vapor, we are taking them to be constant ok, but if it is

not to be taken constant, then we have to take the integral C p into d t and we should

have in that case some correlation for specific heat based on temperature. And we have

to integrate the correlation with temperature to get the heat energy required. So, here we

are taking them to be constant. So, we are taking value of the specific heat of water here

and the temperature difference of the water from 100 degree and 0 degree centigrade. So,

we are having this is the sensible heat required to convert water from 0 degree centigrade

to 100 degree centigrade.

Now,  next  the  phase  transformation  of  liquid  water  that  is  saturated  liquid  to  the

saturated vapor.
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So, here we are again using latent heat of vapor vaporization. So, here h l v signifies the

latent heat from liquid to vapor state. So, this is the value of the latent heat. And here we

are again getting the amount of heat energy required to convert the saturated liquid to

saturated vapor.

After this we go to the raising the temperature of the saturated vapor to superheated

vapor at 1 atmosphere to 200 degree centigrade. Here again we put the specific heat of



the steam and this is the value. And again we get the delta T steam as 200 minus 100

degree centigrade that is 100 degree centigrade.  And again putting the values in this

particular formula, we get the sensible heat transfer needed to raise the temperature of

the steam.

Now, when we want to know the total amount of heat energy required, we simply sum up

the heat energy required in each of the sub processors. And here we get after adding all

this heat energy contributions. This is the value of the total heat energy required in kilo

joule or in mega joule.
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Next we come to a problem where we are we shall see that how to apply the material

balance. Now, we are going to the lumped parameter analysis or macroscopic balances.

Here we have a problem which says that we have to consider a storage tank being filed

with water as shown here.  And here we can see that in this  particular tank there are

several ports one port is for the inlet of water and there are two ports which are the outlet

of water now during this flow of this three streams we shall be having some water.

 Now, this water depth will be changing depending on this three flow rates ok. Now, once

this three flow rates come to a value come to some values, which resistance steady state,

we will find that the level of water will  also reach constant value ok. So, this is the

process description and other things are that we are designating the ports by P. So, this P



1 port, P 2 port, P 3 port, P 1 port is inlet P 2 and P 3 are outlet ports then we have the H

1 that is the height of the port P 2 from the bottom of the tank.

So, and here the liquid height when the bottom of the tank is taken to be H and this v 1 is

the velocity of the incoming water v 2 is the velocity of the outgoing water from port two

and v 3 is the velocity of the outgoing water from port three. Now, please note that these

velocities  are average velocity  over, the whole cross section;  That  means we are not

considering any distribution of the velocity across the cross section. And the areas of

each of the ports are taken to be A 1, A 2, A 3 and the area of cross section of the tank is

taken as A.
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Now, with this we have to do something that we have been ask to use the integral form of

the conservation law to draw, the mass balance for the given system and then for the

system if a mass of ice is placed in water, and this is at steady state. Now, for both the

above cases develop the formulations to find out the variation of water level in the tank

with time.
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Now, in this case first we come to this particular case that we choose the control volume

and the control volume is cutting all the ports ok, so that we can take care of all the

inputs and outputs into or from the control volume. Now, we write the mass, the integral

conservation equation and this is a generalized one, it can be applied for mass balance,

energy balance, momentum balance. Now, first we understand that this is steady state

process. So, we take the variation with time to be 0.

And because in this case the liquid level is also constant and there is no generation or

consumption. So, we take this term to be 0. So, what we are left with is only the flux

term. And here we are taking the liquid to be incompressible so that the density of the

liquid will be considered constant along the flow path and at the three ports.
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So, we write this particular flux term here. And now we recognize that the flux is the

product of the density and the velocity that is the mass flux. Now, suppose you take this

density to be kg per meter cube you take the velocity to be meter per second, then this

term will be a unit of kg per meter square per second that is flux is the quantity per unit

time per unit cross sectional area 

So, here we have the velocity is written in its vectorial form this v x, v y, v z are the three

components in the three directions and i, j, k are the unit vectors in the x, y, z directions

respectively. So, here we are now expanding these terms so first, because the density is

constant.  So,  we can  take  out  the  density  out  of  the  integral,  and  then  we get  this

particular term, and this term is now putting at apply to three different ports. Now, we

shall come to each of these terms one by one.
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Let  us  see  now for  the  port  one  what  we see  the  velocity  has  this  vertically  down

direction whereas,  the normal of this  particular surface is out word. So, this velocity

direction and these normal directions are opposite top each other, and the angle between

these two vectors is 180 degree. So, when we take the dot product, we have to take the

magnitudes of each of these two vectors, and the cross of the angle between them and

this angle is 180 degree.

Now, we know the magnitude of this vector velocity is v 1 x square plus v 1 y y square

and v 1 z square and to the power half. So, in this case we have only the y component

and vertical component. So, we write this vy v 1 y and this we take equivalent to v 1 ok.

So, now this v 1 dot n is this we put this has v 1 this is at unity and this cross one the

degree is minus 1. So, we get minus v 1.
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Now, with a similar logic we also see at port two that the direction of the velocity, and

the direction of the out word normal at port two are the same so that the angel between

them is 0 degree, we apply the same analysis as before. And we find that this v 2 dot n 2

is coming to v 2 x in this case we are taking this as the x direction. So, v 2 x and we are

putting that is v 2.

Next for the port three again we find the out word normal and the direction of velocity

are in the same direction. So, that the angle between them is 0 degree. And again we find

that this is the expression for v 3 dot n 3 and we put this as v 3. Now, please note here

this will be v 3 ok. So, with this now we have all the terms of the flux in the equation

ready.

Now, we shall be applying this two our previous equation for the mass balance. And now

we see that we are putting the respective values minus v 1 A 1 plus v 2 A 2 and plus v 3

A 3; oh this will be plus. Here it will be plus here you see plus here. So, this is how we

are getting, the final expression correlate correlating the velocities at the three ports and

the areas of cross section.
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Next we come to the second part of the problem here we have been asked to consider

that there will be some ice, which has been put in the water. And this ice will be with

time it will be floating here; that means, when once, it goes down then this ice will also

come to the surface of the water and we can see that ice will be floating here. So, this is

the way for this particular situation again, we have to make the mass conservation law.

Now, you see that in this case when the ice is put the ice will start melting. And due to

this melting there will be a change in the water level ok. Now, this makes the system

unsteady.

So, now this ice the addition of the ice is not at any of the incoming or outgoing port it is

within the system. So, this may be taken as some term for the generation of the mass. So,

now when we put this we find that we will not be able to put this as 0, because this is

unsteady state process, we have to written this and neither, we will be putting this as 0,

because this will take care of the melting of the ice. So, here we are writing this that this

phi cap is taken as the rho and this j is the rho v again as earlier and this particular term is

the amount of ice in the system.
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Now, we see that this rho dv is this rho dv, we are doing on the left hand side and we are

putting this v dot n and this is put a melt. And again whatever we have done earlier we

are put with that we find that this is the rho is taken out of this differential, because it is

constant. So, this is giving us the total volume of the system, and this is giving all these,

all these terms for each of this flux terms and this is melt. And then after rearrangement

we arrive at this particular equation to find out how the volume would change, because

of the inflow and outflow and due to the melting of the ice.
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Because now we have to find out the change in the height of the system for the next part

of the question: so first we take this particular thing now here we are not taking any kind

of  steady assumption.  So,  there  is  only we are  taking that  there is  no generation  or

consumption ok.

(Refer Slide Time: 20:05)

So, with this and this liquid is in compressible. So, again we put all these values over

here and without generation term and again, we see that all these things we have done

earlier repeating all those exercises, we arrive at this particular expression without any

generation term ok.
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And now to find out a change in the height of the liquid inside the tank what we do we

put the volume of the liquid inside the tank as HA. And we take out the H out of this

differential,  because  it  is  taken  to  be  constant.  And  we  arrived  at  this  particular

expression, which will give us how the height of the liquid inside the tank would change

due to this various influxes and out fluxes ok. So, here this thing is finally here. So, here

we rearrange this term to get the change in the height of the liquid with time.
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For the next problem, we have the melting ice. So now, again we write for this v we put

HA and A is taken out of differential. And we finally, get this expression. Now, you can

see this expression is a slight modification of the earlier expression. And in this case if

you put the m melt as 0, then we shall be having the same expression as earlier. And this

is some kind of an internal check whenever you are writing this balances, you should see

that for some asymptotic cases you are getting the same result as without the particular

some term ok. So, here we find that if we take this to be 0, we are getting the same term

as earlier. So, this balance seems to be alright.
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Now, we shall consider another problem and this will be involving both the mass and

energy conservation laws. So, the problem is like this that we have an evaporator and

evaporator is a device. In which we evaporate a liquid and may be used for concentrating

some kind of juices in industries. So, here we have the evaporator in which we have

some feed that is going into the system and after evaporation the vapor is taken out from

the system from the top.

And a liquid is taken out from the system from the bottom and to do the evaporation

some steam is being used. So, we have been asked that you have to assume the density of

the  liquid  to  be almost  invariant  during the  evaporation  and we have  been asked to

formulate the equations to determine the variation of liquid level with time and the heat



duty required. And this particular steam is getting flowed through a pipe or may be a

coil.
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So, that  means,  that  steam is  not  coming in direct  contact  with the liquid inside the

evaporators so that as per the mass balance of the liquid there is no effect of the mass of

the steam on to the mass of the evaporator system ok. But the liquid inside the evaporator

is interacting with the steam through, the heat energy transferred from the steam to the

liquid.

Now, first you understand that the height of the liquid decides the mass of the liquid

inside  the system.  And the mass  is  the  product  of  the  volume of  the liquid  and the

density. So, here we write the volume here and here we are putting all the flow rates like

this ok. So, liquid flow rate for an L, V vapor flow rate is given by V and feed flow rate

by F.
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Now, we take the control volume around the whole reactor and for this we first see the

mass conservation here we are finding that no mass generation. So, we take this as 0 and

then this flow rate it is incompressible to. So, that density will be taken to be constant

later, and we assume that there is no liquid sticking to the wall of the evaporator.
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Now, as we have done earlier we find out that flux terms for the feed, we see that the

feed the direction of the feed, and the outgoing normal are opposite to each other. So, the

angle between them is 180 degree and so we put these magnitudes of the feed, and the



unit normal and we get the flux to be minus F. Similarly, we when we go for the vapor

we find that this outgoing normal and the vapor of the same direction; so that the flux

value its coming to V.
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Similarly, for the liquid side the same thing I mean as vapor, we find the flux of the

liquid its coming to L. Now, the mass flux cannot be written by taking the sign into

consideration. So, this is a minus F plus V plus L and with the negative outside so it

becomes F minus V minus L.
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Now, coming to the mass accumulation term, we see that the mass within the evaporator

comprises two components, one is the mass of the liquid, and the mass of the vapor. And

if we put the mass of the liquid in terms of the density, and the volume of the liquid and a

mass of the vapor as a density of the vapor and volume of the vapor. Now, you see the

volume of the vapor is the total volume of the container minus the volume of the liquid.

So, so that we are avoiding m an extra variable that is the volume of the vapor. Now, if

we put this here in the accumulation term and then we expand it, we find this is the

particular terms we shall be getting.

Now, this is the after putting this terms and I am putting the flux we will be having this

particular  expression  to  find  the  variation  of  the  liquid  height  with  time  inside  the

evaporator. However, if you look at this particular expression you see that this expression

is not a very straightforward expression, it is a differential equation in terms of h. And

here we have one term we will be having the dh by dt, another term will be having just

the height of the liquid, and rest of the terms will not be having the h, but this will need

the knowledge of the variation of the vapor density with time. And rest of the things can

be solved using some standard solver for differential equations.
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Now, another formulation may be made to simplify this problem a bit and that is like this

thus instead of taking the whole evaporator as the control volume, we can just focus on

the liquid side as the control volume. Let us see that what advantage, we are deriving by



this particular alteration in the selection of the control volume. So, again we write the

mass balance equation for this new control volume. And here in this case, we see that the

there is no generation or consumption of the mass the fluid is incompressible and then

the no liquid is taking to the container.
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Now, again we write for this particular control volume the flux terms this same as earlier

one. And this is also the same as the earlier one only new addition is coming due to this

particular  term and  what  is  this  term.  This  term is  signifying  the  amount  of  vapor

generated from the liquid and this vapor is going out from the liquid phase to the vapor

phase. And since this is cutting this particular control surface; so this is taken as a flux

term and not as any kind of generation term. So now, with this new flux term I am what

we can see that the net flux will be the contribution of the feed flow rate, the liquid flow

rate, and the amount of evaporation taking place.
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Now, again we write this amount of liquid change with time in the evaporator as this dm

l by dt. So, within this particular control volume, this is a change in the mass of the

particular system. So, this is again written in terms of density, and the volume of the

liquid. And here we are writing this particular volume and this volume is replaced by the

product of the height of the liquid and a area of cross section, this area of cross section is

taken out of the differential. So, we get this dh by dt into rho L into A.

Now, after putting this value and combining it with the flux term, we get this particular

expression. Now, you see this expression looks much simpler than the earlier expression

for the change in the liquid height with time. And the advantage we are getting is like

this that if we assume that the liquid is a saturated liquid, then whatever mass is getting

generated due to evaporation can be easily computed from this expression. In this we

have the amount of heat liberated by the steam divided by the enthalpy of vaporization of

the liquid.

So, this will we are able to simplify this particular expression only thing, we have to see

is this that if this assumption is not made, then we cannot write this expression. Because,

the amount of heat liberated by the steam will also be used to heat up any kind of sub

crewed liquid present in the system up to the saturated condition, and only after that the

evaporation term can be added.



So, without going into those details even though we can take those fetch into account

easily and only thing will be this the solution will be grid will get more involved other

than this rest of the things can be done easily.
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Next, we try to find out how this particular heat duty of the steam can be evaluated. For

this, we chose another control volume that will be across this particular pipeline. So, here

again we see that this is the um an integral energy integral balance. Here we again put all

the assumptions as before, and we can take out all these things that in this case we are

assuming that steady state within the pipeline. So, there is no accumulation, and there is

no generation  term.  And we also assume that  there  is  no liquid  it  is  sticking to  the

pipeline wall.
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Now, here you see that we can like earlier, we can find out the flux values and this is

associated with the incoming steam this is associated with the outgoing steam. And you

can see that there will be changes in the sign of these two fluxes at the in inlet and the

outlet. And then the net flux is this particular expression. And from this expression, we

find the amount of steam going in is equal to the amounts of steam coming out of the

system.
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Now, for  the  energy  balance  what  we  do  that  we  again  write  this  in  terms  of  the

enthalpies with the steady state assumption and no generation term. And we will find that

for the fluxes, we are getting this is the enthalpy that is going into the system with the

steam, and this is the enthalpy that is coming out of with the steam.
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Now, this particular expression that is the heat liberated by the steam is also taken in the

flux term, because it is crossing the control surface. So, this particular heat is should not

be taken as any kind of generation, but should be taken as a heat flux. Now, once we

have written this particular expression at steady state. We find that the amount of heat

liberated from going from the steam to the liquid is the difference in the enthalpies of the

incoming steam and the outgoing steam.

So, this is the way you solve for the amount of heat liberated by the steam.
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More details can be found out in these particular references. And we shall be doing some

more problems from this.

Thank you.


