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Hello everyone, so we are almost towards the end of this course. What we have been

discussing where we have been discussing salient features of finite element method.
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Now, you  see  if  you  recall  these  are  the  different  kinds  of  elements  we  may  have

different depending on the depending on the dimensions of the problem and what kind of

accuracy we need. We already discuss, we already discussed the formulation for this

element, then formulation in the sense we have a general formulation if you recall that

your stiffness matrix is equal to B transpose integration over domain B transpose dB.

Now, way what is B? This integration over the entire domain now depending on whether

it the problem is one dimension, two dimension, three dimension this integration will be

over the over the entire domain. And similarly depending on what kind of problem you

are doing whether it is a truss problem, beam problem or some other problems, these D

will be different.

And then B depends on what are the degrees of freedom you have at every nodes. And

how these degrees of freedoms are interpolated are how those degrees are freedom are

represented through a functional through a functional form to a function that depends

that gives you b. So, B essentially the strain displacement relation, not necessarily strain

displacement relation, but the examples that we have been discussing in that context B

strain displacement relation right depends. We will see towards the end of this lecture

that depending on if your problem is different degrees of freedoms are different, then the

interpretation of B will  be different,  but essentially  the B is you have some primary



variable,  you have some degrees  of  freedom that  degrees  of  freedom in  our  case is

displacement.

So,  you have  degrees  of  freedom and their  degrees  of  freedoms at  every  nodes  are

interpolated or a that is represented through a function. And then when we calculate the

derivative of that functions that gives you B. So, this is the general form of stiffness

matrix. Similarly, we can have a general form of load vector as well we discussed that.

Now we have seen how to for a triangular elements, for a quadrilateral elements, we will

briefly see if the elements is not. If you have a 6 noded triangle and if you have a 4

noded set it right down in three dimension then what how to how to get those shape

functions. The process exactly will be same, we will see that shortly. Now, one important

point ok let us wait for that.
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Now, let us start with let us see if our element is a 6 noded element,  then what will

happen. Now, if it is a 6 noded element then draw a 6 noded triangle, then we have these

are  the  nodes.  The  process  will  exactly  be  saying  I  am  repeating  this  process  just

because. So, again you have a node number for instance, suppose this is 1, 2, 3, and then

4, 5, 6. We already have seen then how you number this node in the context of one-

dimensional problem how we number the nodes depending on that you get the stiffness

matrix the population of the stiffness matrix right.



Yeah, you can be a number in you can number those elements in such a way that your

stiffness matrix you get a bandage stiffness matrix. And bandage stiffness matrix always

better to have from the computation of perspective. Now, so these are the node number

similarly you can have say these are the degrees of freedom at every node. So, you can

have degrees of freedom say here it is u 1, u 2, u 1, u 2, u 1 v 1, then here it is u 2 u 2

then v 2 v 2, u 3 u 3 v 3 and so on. And then u 4 u 4 v 4, u 5 then v 5 then we have u 6 u

6 and then v 6.

Now, the first the generic approach for all the; whatever elements you are using general

approach will be same. Now, you have two degrees of freedom here u and v, though are

two  degrees  are  independent  degrees  of  freedom  right  independence  displacement

quantity  and u  will  be  approximated  as.  Now, since  we have  6  nodes  yes  we have

information from 6 nodes, so we can u say a plus b x plus c x c y plus d x square plus e x

y plus f y square.

We will shortly see what when we approximate a function through a polynomial then

what are the terms to be considered. For instance see we can have just 6 nodes only, so

information from 6 nodes are available. So, in the approximation we can have we can

have 6 unknown.

Now, the question is how you we can have a several as some other approximation where

your polynomials are different, the monomials are different instead of say x we do not

take the term x and we take a different term. But keeping the number of unknown same

is that enough is that is that right. We will see that shortly.

So, similarly u have this, and similarly v also have this. So, then what will recall what is

the approach we did, we the conditions that we have is u 1 is equal to a plus b x 1 plus c

y 1 plus d x 1 square plus e x 1 y 1 plus f y 1 square.

Similarly, we have u 6 is equal to a plus b x 6 plus c y 6 plus d x 6 square plus e x 6 y 6

plus f y 6 square right. So, this gives you 6 equations, this gives you 6 equations, and

then we have 6 unknown we can obtain those 6 unknowns and when we have the 6

unknown, finally u which is a function of x and y can be represented as N i U i. So, N i is

the shape function it is a function of x and y. Similarly V at any point x and y can be

represented as N i and V i. U i and V i are the nodal values and N i is a function of x and

y.



Now, naturally we can look at by looking at this now let us compare this with these three

noded triangle. Three noded triangle also we already derived the expressions for n right

this is node number 1, node number 2 and node number 3. 

And there also we had u is equal to U x y is equal to N i N i U i ok. This expression is

same. And V also V x y is equal to N i V i now, but then only difference is here is here

you have summation over only three nodes, here you have summation over only 6 nodes.

Now, there is another major difference. The difference is if you recall when we when we

when  we constructed  the  shape  function  for  this  element,  how what  was  the  initial

approximation of field variable, approximation one u is equal to a plus b x plus c y. So,

your u, u that time similarly v. So, u was essentially a linear function of x and linear

function of y right.

But now here we have u is that much we could have afford for this three noded triangle,

because we had only three nodes, therefore, the informations are available only for three

nodes which will help us to calculate only three unknown that was the reason why we

had just only linear approximation.

But whereas, here we have 6 nodes, so we can approximate this field variable with a

quadratic approximation like this. Then what is the consequence of that consequence of

that is other consequence we will see when we talk about convergence. But immediate

consequence is you see in this  case if we approximate say if we calculate strain say

epsilon; epsilon x, epsilon x, if you if you recall epsilon x is the strain in x direction right

longitudinal strain normal strain in x direction that is equal to. So, if you have d u d x

then this becomes b.

Similarly, epsilon y becomes d v d x this becomes similar a constant like this that may

not be view or some other constant some constant. And similarly if we have say epsilon x

y, which is if you recall half of del v del x plus del u del y, this will be also because some

constant because both u and v are the linear function of x and y.

So,  what  this  means  this  means  that  your  entire  strain  field,  now the  strain  field  is

represented as if you have a strain like this in two dimension. So, this is epsilon x if write

epsilon x epsilon x x epsilon x y epsilon x y epsilon y y or epsilon x y and y x are same.



This is the entire strain field. This entire strain field is equal to constant right. Constant

means not this constant, this constant.

Now, so you have a triangle you have an element within that element your strain field is

constant and that is the reason this element is called constant cons let us use different

color this element is you will called constant strain triangle or CST. If you see any finite

element book probably the initial phases the elements will come across is constant strain

triangle.

Now, this element has some disadvantages, advantage or disadvantage, those aspects we

will not discuss here. You yourself apply you yourself write a code for finite element

method the way we had written a code for 1D bar and beam element you can do that

exercise for higher dimension as well. And then use constant same triangle and then see

yourself the results what you are getting how the results is closer to the actual results ok. 

So,  there it  says the strain is  constant  along the within the  element.  Then therefore,

naturally if your strain is constant stress is constant everything is constant right. Now,

strain and stress are constant. Now, the thing is which I mean by intuition you can say if

in  if  you have body, then you discretize  the body into small  elements  several  set  of

elements.

And then within every element you are assuming this if you use this element it gives you

strange constant strain within the element. And therefore, if you use a larger size of the a

element, then what happens the strain is constant over a larger area which may not be

possible which may not be consistent with the loading field on the structure.

Therefore, this element can give you a results, but the condition is at the very limiting

case  when  this  element  size  is  very,  very  small.  Now, even  with  smaller  elements

whether you get closer results or not and what are the difficulties you face, well solving a

problem is in this element that will not discuss here. I leave it to you find that yourself.

Now, but when we have a these triangle, where the u is essentially a quadratic function

of x and y and then if you calculate epsilon x here, epsilon x for in this case, so epsilon x

will be B plus 2 d x plus e y. So, it is a linear function of x and y. So, this is not constant.

Similarly, you can have epsilon y and epsilon x y. So, here you that is restriction the



strain is constant that restriction is not applicable here. So, you get varying strain field

even within an element.

Now, once you have this N i U i, then next is next is again the same approach calculate

strain epsilon x will be your del N i del del N i del x into U i. And epsilon y will be del N

i del y into V i. And epsilon x y will be half of half of del N i del N i del y i del, del y into

U i plus del N i del N i del x into V i.

So, this gives you a strain displacement relation. So, it is these thing you can write as

epsilon is equal to is equal to some B matrix into u and v right U i and C i. So, this gives

you the B matrix strain displacement relation, where B matrix is essentially what will be

the size of the B matrix in this case, the size of the B matrix will be you see here you

have here total degrees of freedom is 12. So, size of the B matrix will be 2 into 12 right.

This is size of the B matrix. And size of this will be 12 cross 1, and this will be.

So, this is how you can this 3 into 3 into 3 into 12, and this will be 3 into 1 this strain will

be  3  into  1.  So,  this  is  how you can  have  this.  Once you have  B matrix,  D is  the

constitutive relation strain displacement relation substitute that in the stiffness expression

and a integrate it over the entire domain, you get this stiffness matrix for this element.

Now, a  similar  exercise you can do if  your  element  is  in  three  dimensions.  So,  and

another thing you have to you must do is once you get these shape functions and then the

properties of that shape function we discussed a. First thing you have to plot this shape

functions and then see whether the shape functions satisfy the Kronecker delta property

or not whether the shape function satisfy partition of unity property of not. You take any

in any arbitrary point and sum all the shape functions whether they are they are giving

you one or not. So, these are the some property that shape function must satisfy.

And this is a check see the by construction it should satisfy. But when you write a code,

then  these  are  the  some  checks  that  you  should  perform  to  check  whether  your

computation the codes are written properly or not. Now, similarly if we have suppose if

we have a element in three dimension, three dimension for instance if we have a this kind

of element if you have a this kind of elements a tetrahedral, we have four three elements

three  nodes  and one  another  total  four  nodes  we have.  So,  if  we have  this  kind  of

elements then what happened.
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So, what we have is we have we have we have say then and then another element is this,

another node is this. So, we have total one node is here and one another node another

node is here. So, our elements is essentially this right elements is this.

Now, similarly we have to first give the numbering of the nodes say 1, 2, 3, 4. We will

not discuss [FL] now that every nodes, every points you have now since it is in three

dimension. So, every points you have 3 3 degrees of freedom right.

So, this is your u 1 u 2, then u u 2, then you have can have v 2, and then you can have w

2. So, u u 1, v 1, and then w 1, and so on similarly, here you have u 3, then v 3, then w 3

and then u 4, v 4, and then similarly w 4. So, at every points you have 3 degrees of

freedom.

Then next is we have to construct, these are the values of the nodal points. Now, we have

to get a value at the intermediate point within the element for that we have to represent

them all this nodal value through a function. And for that assume u, which is a function

of x, y, z both say x, y, z both. You have to approximate it. Say it a plus b x plus c y plus

d z ok. 

And then you have you have 4 nodes. So, essentially we are getting information from 4

nodes, so 4 equations we can have for every degree of freedom, so that is why, we have



to restrict it a, b, c, d. Now, then substitute u u u 1 is equal to a plus b x 1 plus c y 1 plus

d z 1 and so on. 

Get this get u 4 is equal to a plus b x 4 plus c y 4 plus d z 4. So, get this solve it,

substitute a, b, c, d in this expression. And finally, get u x, y, z is a function of N i, which

is a function of x, y, z and then u i, and similarly for v i and w i. 

So, once we have this displacement approximated like this, again you can check all the

properties  of  these shape functions.  Then we have to  differentiate  it,  you to  get  this

strain. And that gives you strain displacement relation B. And again we have to substitute

that in this equation, B transpose D B, and then we get integrate over it, get the stiffness

ok.

Now, in this case what would be, this is a three dimensional problem. So, what would be

the  size  of  D,  size  of  D will  be  6 by 6,  size  of  D will  be if  you recall  in  a  three

dimensional space for plane strain, and plane stress idealization the size of view was 3 by

3, because you have earlier 3 stresses or 3 strain. 

Now, but  in  this  case  we  have  all  6  components  of  stresses,  and  6  components  of

strength. So, constitutive relation will be 6 by 6 ok. And then what is the how many

degrees of freedom total how many degrees of freedom we have, at every node you have

3 degrees of freedom, total  4 node. So, we have total  12 degrees of freedom. So, B

matrix will be B matrix will be 6 cross 12. And then B transpose naturally will be 12

cross 6. 

So, essentially this gives you a matrix, which is 12 cross 12 the stiffness matrix size of

the stiffness matrix ok. So, once we have the stiffness matrix, the again similar exercise

you can do for loading. And then we get this get the expression K U is equal to F. And

rest of the things at same, you have to solve it ok.

So, this is this is how we can do it for any other any degrees any other nodes as well, but

there are some efficient ways also to write the 2 x to construct the shape functions. Now,

all the shape functions the common thing, if you see whether it is for 1D, 2D or 3D three

dimension,  when you construct  the shape function,  we assume that  displacement  the

degrees of freedoms that the field variables is approximated through a polynomial. 



But, again depending on the more that is the most of the time that is a general thing

common thing, we take there are reason for that; we are not going into that theory. Here,

but just to inform you there are it is there are cases, you can you can think of not having

polynomial expression for your field variables, you can have a similar different kinds of

a expression for your field variables ok. 

Now, so you can have in three dimension, you can have any other degrees of freedoms

like this, but many the essence will remain same. Once you have the degrees of freedom,

approximate them give at function representation of those degrees of freedom through

which we can get the values at any intermediate point substitute that in the expression.

And get the corresponding stiffness matrix ok. 
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Now, then yes, this is important. You see just now I was I was telling you what when you

approximate the this field variables, then what are the elements you should take. One

thing is the number of elements in the approximation, the number of number of unknown

in the approximation that depends on how many nodes we have, how many informations

we have from the element right. This is one thing.

But, the second thing is then keep can we can we can we take any arbitrary combination

of x and y, keeping the keeping the total number of unknown same, actually not. So, this

gives you a guideline what are the points you have to take. This is a Pascal triangle. It it



tells you that it tells you that if your if it is given in two dimension, now with the similar

thing can have in six dimension three dimension.

Now, it tells you that if it is constant, then of course, you have just one term constant. If

it is linear approximation, then you have to use all this term you have to use. You have to

use one term associated with constant, then one term for dependency x dependent, and

one term associated to y.

And then if it is quadratic, so here how many terms you have, you have y term. Now if it

is quadratic, then you have to take all the terms up to this. Means you have to take if you

recall for quadratic for quadratic, we assumes when we have when we assume that y is a

quadratic, we took a plus b x plus c y plus d x square plus e e e e e x y plus f y square.

So, total six terms are taken, all these terms are taken.

Similarly, if you have if you if you have a cubic polynomial, then you have to take all

this ten term to make it cubic, in the in a way that the you should not have any biasness

in the in x direction or y direction. For instance, if I do not take this instead of that, if I

take plus f plus f say x cube, still we have only six unknown. And we have six equations,

we can get these unknowns. But, the thing is we have by doing so, we have introduced a

biasness in the direction. So, this is not a complete polynomial, completeness in with

respect to both the coordinate axis.

So, when you take this these if you follow this rule, then you have a polynomial, you

have  an  expression,  which  is  complete,  and  that  is  very  important  for  getting

convergence. We will discuss the convergence shortly, what is convergence, so that is the

reason why when you take this approximation, you have to be careful what are the term

you take. Now, this is for a Pascal triangle.
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And the thing is isoparametric formulation. This is important you know you see all the

all the cases, where we discussed so far. What we did is we know what is the values of

coordinates,  we assume it  is a 1D element,  we assume it  is a triangular element,  we

assume a is a four-noded element.

But, you know the what happens many time that for instance for instance if you have if

you if you have a domain like this say anything if you have a domain like this say for

instance say for instance if you have a domain like this a domains any arbitrary domain

like this, and you discretize this domain into say set of elements. These are your elements

four-noded element ok. For every node, these are your for this is the boundary, this led is

the boundary. And for every these are the nodes.

Now, you recall, when you talk about this quadrilateral elements four-noded elements,

then we assume if you recall, there again if I go back to yes again go back to four-noded

quadrilateral, we assume that this length is l and this length is h right. So, it is a perfect

rectangle.  At  least  that  was  the  thing  that  we  assumed  while  deriving  these  shape

functions, but it may not be possible every time right.

So, what we have to do is suppose in this case your elements are like this elements are

essentially, then if you draw one element, your element will be like this, your element

will be like this, which has four-nodes. These are the nodes we have, but they are not

rectangular.



Then what happens to this case, how do you calculate this stiffness matrix for this. And

this is just an example I am giving, you it happens almost all the time, your elements are

not perfect square or perfect rectangle how depending on the what size you are, what

shape you are taking, it is not perfect in that sense.

So, what we can do is suppose, we can define two space, one is parametric space, where

your  element  is  a  in  this  case,  if  you look at  is  a  perfect  square,  which  is  it  these

coordinate  is  sees it  is  2 by 2 square,  you can have 1 by 1 square.  Now, then what

happens, this is your parametric this is your parametric space, and then you then you

have an actual element like this, whose coordinates are x 1, y 1, x 2, y 2 and so on.

If you recall  in the previous cases, we wrote the shape function in terms of x 1, y 1

stiffness matrix (Refer Time: 27:38) x 1, y 1 and so on. But now, now this is directly not

possible, because the shape this shape is shape of the element is not perfectly rectangle.

So, what we can do is we can we can define a parametric space like this, and then we

have we have an actual element like this, and then we can a map we can have a map

between this space and this space. And get and get all the then approximate your field

variables over this with respect to the parametric coordinate psi and eta, and then find a

relation  between  psi  eta  and  x  y  through  a  map  like  this.  And  then  do  all  these

approximation  integration  on  this  on  this  element,  and preserve  this  map  to  get  the

stiffness matrix final  stiffness matrix  of this  element.  So,  this is  called isoparametric

formulation.

Why it  is  call  isoparametric,  let  us  not  bother  about  right  now ok,  isoparametric  is

essentially  we  will  come  to  this  point  shortly.  Now,  this  is  then  isoparametric

formulation, now or the concepts. So, there is there exists a formulation through which

even your elements are not perfectly square, perfectly rectangle, you can map these two

an element in a parametric space, and do all the exercise, and get final approximate final

stiffness matrix of this element. Now, this kind of formulation is also exist and play, and

these are very common.



(Refer Slide Time: 29:06)

Now, this is important convergence. Now, before we talk about convergence, let us talk

about  some of  the  important  term.  You see  essentially  what  we do,  we do we have

essentially we are solving some phenomena some physical process like.

Now, what happens you for instance, if I give you an example. Suppose, I have an I want

to I have an arbitrary area like this arbitrary area like this, now I want to determine what

is the area of this shape. Numerically, it is not a square, it is not a rectangle, so we do not

know the closed forms close form relation of the area and the its geometric parameter.

So, what we can do is one the common thing we can do is we can divide it into some

squares some squares like this ok, and then what we do is we calculate the number of

squares. Suppose, for this it is full square, we take the full area, and this is how much

percentage of square depending on that we take the area, and then we sum them, we get

the area of this entire shape right.

Now, one common sense tells you that if you take smaller squares, if you take smaller

square, then you get your area computation will be better. So, if you take further smaller

square, for instance if you take if you take further smaller square, and then you compute

the area, so your computation will be more accurate more closer to the actual value.

So, in a sense what we say is when we take further smaller square means what, when we

are taking if we just bring the analogy that every square is essentially an element. So,



when we take larger square, the element sizes are larger, but the number of elements are

small. So, if we keep on reducing the number of squares reducing the size of the squares,

then  what  will  happen,  your  number  of  elements  increases  and  also  you  get  better

accuracy right in the context of this problem.

Now, you if you keep on doing that, we will and at some point what will happen that this

if we if we plot it, it will what will happen that, if we increase the if we plot and cut we

with x-axis the number of elements, and y-axis is the actual value, then we will see as the

number of elements become more becomes more in the your actual the computed area is

approaches to the exact value right. So, this is good.

Then when we say that these approaches to exact value means, it is converging to the

exact value. So, an every computation and this is just to bring an analogy, and finite

element method exactly we do that. We enter divide the entire into small small elements,

and then we then we write the equation for each element, and then assemble them to get

the solution of the entire system.

Now, naturally very similar to that, if we increase the number of elements, the intuition

says that  your predictions  the computations  form computation  will  be closer  to your

actual value. And these entire thing (Refer Time: 32:37) this if you and this is called

convergence. Means your if you keep on increasing the elements, your prediction will

converge to the actual result ok, will be closer to the actual results; or in other way we

can say that if we keep on increasing the number of elements or reducing the size of the

elements, the error between the predictions from your finite element simulation and the

actual results, so this error will decrease right. So, this is called convergence.

Now, now the convergence generally I can be achieved in two way, one convergence is

called  h convergence.  For instance,  in this  case what  we have done is  we have just

increase the number of elements right or decreases, we have decrease the size of the

element. Say size of the element is if we h is the characteristic size of the element, then

we say that if we this convergence is achieved in this case, if h is the size of the square

each square. So, this convergence is h is by reducing the h that is it.

Keeping all are squares only, but larger square and smaller squares. So, this convergence

is  achieve  the  error  is  being  reduced  by  reducing  the  size  of  the  elements.  This



convergence is called h convergence, this convergence mean the convergence achieved

by reducing the size of the element.

(Refer Slide Time: 34:24)

Now, you can have another convergence, which is called p convergence. What is it, the p

convergence is p convergence is now you go back to this set of elements, you see what

happen in these case. If you recall, in this case your displacement field was linear. In this

case, your displacement fields was quadratic quadratic.

Similarly, here also you will see in this case, your displacement will be linear; in this

case displacement will be quadratic. So, you can have an element, where displacement

field is a displacement field is displacement field is cubic. You can have element, where

displacement field is fourth order and fifth order and so on.

So,  if  we  increase  the  order  of  this  displacement  field,  means  the  order  of  the

approximation,  then  what  happened,  then  also  you  can  get  convergence.  And  this

convergence is called p convergent; p stands for the order of the approximation. So, here

linear your p is equal to 1, here quadratic p is equal 2 and so on, you can have a cubic

with p is equal to 3.

So, if we increase the higher order elements, then also you get a results, which is closer

to  the actual  results.  Then this  is  called  the  p convergence.  So,  convergence  can be



achieved in both way either you reduce the number of elements or increase the order of

the approximation. Now, with this, this is called convergence.

Now, convergence is a very important part in finite element method. And if you take any

book, there is a chapter given and convergence, different kinds of convergence, what are

the  estimates  of  convergence,  how  to  how  to  see  whether  the  convergence  can  be

achieved or not, what are the test, what are the error analysis is everything is given there.

Now, here  our  objective  what  we have  been  doing  in  this  week is  to  give  you the

information that these are the things exist, and you have to go through the books to read

what exactly it says.
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Now, now the question is you see here another important thing is convergence. Suppose,

for instance you have you have you have here number of elements number of elements

elements, and this is error. Now, suppose this is your actual results, this is your actual

results. Now, essence is you increase the number of elements, you can get your error

should be reduce. This is not the actual results; suppose this is the, it  is actual result

actual.

And now, the convergence essence is if you increase the number of elements, you the

results should converge to the prediction should converge to the actual results. Now, you

see it can converge to the actual result like this; this is also converging to the actual

results. Now, this is also converging to the actual results, then this is also converging to



this is also converging to the actual results ok. There are many way your prediction can

converge to the actual results.

Then the question is whether all these convergence are acceptable convergence or not, or

infinite element framework what convergence do we expect. Now, before I discuss that

before I say that,  you see what exactly we are doing. If we take an any infinite any

system, which is a continuous system, and if you might have (Refer Time: 37:31) you

know dynamics course that or any others any structural mechanics course that if you take

an infinite if you take a continuous system, continuous system is essentially a collection

of infinite number of points right.

Now, if  you  take  a  point  in  three-dimensional  space,  every  point  has  6  degrees  of

freedom. In two-dimensional space, it has 3 degrees of freedom right. Now, when you

have a continuous system, which is a collection of infinite number of points and every

points  having  6  degrees  of  freedom,  naturally  a  continuous  system  having  infinite

degrees of freedom right; so, infinite way in there is infinite in there infinite possibilities

that the structure can deform right a continuous system can deformed.

But then, what you are doing, when you discretize a system, then you are essentially

what we are doing. When we discretize a system, then your actual continuous system is

essencia[lly  is  a collection of infinite  number of points,  but we are representing that

through a finite number of points discretization is essentially that.

(Refer Slide Time: 38:42)



When we say that when we say that an element is for instance if we take this case in this

case, your actual points actual in area was this, which is an continuous system having

infinite number of points, thereby having infinite number of degrees of freedom.

But, now this is represented by just set of points, the collection of collection of these

points 1, 2, 3, 4 only sixteen points.  So, when you discretize it,  this is a continuous

system, this is this is a continuous system, and this is a discrete system. In the discrete

system, essentially we have a finite number of point. When you have a finite number of

points,  then what is essentially  we are doing, we are we are reducing the degrees of

freedom right.

So, every points has 6 degrees of freedom 16 every points are 3 degrees of freedom, 16

points 48 degrees of freedom, but actual system has infinite degrees of freedom. When

you discretize  it,  we are allowing only 48 degrees  of freedom. When we reduce the

degrees of freedom say essentially what we are doing, we are restricting the freedom of

this object to deform.

The way the way it may deform, it can deform in a continuous system, we are restricting

that deformation. Means we are making our system stiffer compared to the continuous

system. When you make your system stiffer, then when you solve for displacement, what

do we expect,  your displacement is more than the actual system or the less than the

actual system? Obviously, less than the actual system, because always we are dealing

with a stiff system if it is the case, then if you plot if we plot sorry.



(Refer Slide Time: 40:21)

Now, if this is the case, then if you plot, it is number of number of elements number of

elements, and this is actual this is your computed results. And this is your actual results,

then  always  the  results  we  get  less  than  the  actual  results.  We are  talking  about

displacement  less  than  the  actual  value,  because  we  are  always  dealing  with  a  stiff

system.

And if we increase the number of elements, you are slowly increasing the degrees of

freedom, you are making this structure from stiffer to stiff, and then more flexible than

more  flexible.  So,  these  we  will  converge  to  this,  this  is  a  typical  characteristic  in

convergence in this finite element method. Say it is always bounded from top. So, this is

the way we get the convergence for (Refer Time: 41:11). But again, so we would not get

the converges any opposite way. So, this is the convergence.



(Refer Slide Time: 41:22)

Now, then quickly one important thing is still  left  that is that is integration.  We will

(Refer Time: 41:31) we will discuss that integration.

(Refer Slide Time: 41:39)

You see when we talk about when we say that in your stiffness matrix is integration B

transpose D B D transpose D B d omega, so this has to be integrated over the domain.

Now, the domain is it can have a different kinds of problem, so this integration may not

be possible always most of the time in a close form. So, we have to do it in a numerical

following  a  numerical  technique  and  that  is  an  important  aspects  infinite  element



method. Will that we will discuss that integration in the last class in the next class. So, I

stop here today; see you in the next class.

Thank you.


