
Matrix Method of Structural Analysis
Prof. Amit Shaw

Department of Civil Engineering
Indian Institute of Technology, Kharagpur

Lecture - 34
Analysis of 3D Truss (Contd.)

Hello everyone. This is the 4th lecture of this week. The last  class we discussed the

formulation of analysis for 3-D truss. Today we will translate that formulation into a

code and demonstrate that code through 2 examples. The first example will consider is

this  one,  which is  relatively simpler  in terms of number of members and number of

nodes.
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And the second one is this example, which has more number of nodes and members.
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So, let us start with first this one. So, it has so, first thing when we have a problem, the

first thing we have to do is we have to give the numbering of the nodes. Suppose this is

node number 1, this is node number 1. This is node number 2, this is node number 3 and

this is node number 4.

And say and members, say this is member number 1, member number 2 and member

number 3. So, member one is connected between node 1 and 4, member 2 is between 2

and 4 member 3 is between 3 and 4. Now all these joints, joint 1, joint 2 and joint 3 their

hinge joint so, essentially displacement at these joints are 0. Now the degrees of freedom

at since, is a space truss at every point we have 3 degrees of freedom. And suppose these

3 degrees of freedoms are this is your 1 and this is this is 2 and this is 3.

So, this is u 1, this is u 2, this is u 3. Similarly, we have here this is 4 this is 5 and this is

6, and this is 7, this is 8 and this is 9. And similarly we have this is 10 and this is 11, and

then this one is 12. So, it has total 12 degrees of freedom. Out of these total 12 degrees of

freedom, degrees of freedom 1 to 9 they all are hinge joint so, they are all constrained so,

u  known is  equal  to  u  known is  equal  to  u  1,  u  2  to  u  9  and  this  is  equal  to  0.

Displacement at these degrees of freedom are 0, and u unknown for which we have to

solve this that is only u 11, u 12 and u 10, u 11 and u 12.

Now, nodal load vector, suppose we have a load of, here we have a load concentrated

load of 10 kilo Newton. So, p which is in the direction of 11 degrees of freedom, then p



11 will be minus 10. And all other p will be 0 so, for node number 4. So now, let us give

this information to the code and then see what is the result. And in the process will also

discuss the various steps in the code.
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So, to start with this is the code. Now, these are the nodal coordinates of different nodes.

3 nodes and this is the member connectivity, all these members. Now total degrees of

freedom for this  is  3 into n,  3 degrees of freedom per node so, total  3 n degrees of

freedom. This is member property, now you can have different these look at please note

that e and they are they are essentially vector.

So,  for  demonstration  purpose,  let  us  assume there  one,  but  you can  you  can  have

different  values  depending  on  the  member  property.  And  we  have  to  change  the

corresponding element in that vector. So, this is the initialization of the displacement

vector and the stiffness matrix; the stiffness matrix, size of the stiffness matrix will be 3 n

by 3 n.
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Now, this is the applied load, this is initially, we substitute all the values are 0. And then

only the force we have here is only in the 11th degrees of freedom we have minus 10. So,

this will be minus 10 so, p 11 will be minus 10.

Now, just now as I said the all known displacements are 1 to 9, they all are constrained

through says essentially those values are 0, only unknown displacements are 10 11 and

12 we have to solve for this. And K 1 1, K 2 2 are the same either partition stiffness

matrix, if you recall we discussed that in the case of 2-D truss as well, the total stiffness

is now partition into K 1 1 K 1 2 K 2 1 and k 2 2 right now K. So, this is k 1 1 and this is

K 2 1, K 1 1 and K 2 1. Now, this is the computation of stiffness matrix, it starts from

here.
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So,  this  loop  is  over  the  number  of  element.  First  determine  the  length  of  a  given

member, once we know the coordinate.  These are the C x C y, C y or the lambda x

lambda y lambda y here lambda x lambda y and lambda z if you recall, this is how it is

related to this is lambda x, this is lambda y and this is lambda z. Now once we have

lambda x lambda y lambda z, next thing is the transformation matrix. The transformation

was again  if  you recall  it  was the transformation  was if  t  was lambda x,  lambda x,

lambda y, lambda z then 0 0 0, then 0 0 0, lambda x, lambda y and lambda z, right.

This is the transformation matrix and this is that matrix; this is this matrix right, this one

is this transformation matrix. This is the transformation matrix. And this small k is the

local coordinate system, if you recall local coordinate system all local coordinate system

is 1 minus 1 minus 1 1, then AE by L that is the stiffness matrix of a member and this is

this stiffness matrix with respect to local coordinate system. AE by L is not multiply here

it is multiplied at the end here.

Now if you recall, then the global stiffness matrix, global not global stiffness matrix was

means stiffness matrix with respect to global coordinate that was AE by L, AE by L and

then T transpose k into T, right.  This is the expression for stiffness matrix and these

operation is performed here.

So,  this  is  the  stiffness  matrix  or  member  stiffness  matrix  with  respect  to  global

coordinate system. Now once we have member stiffness matrix, then we have to along



with the member stiffness matrix  we know the connectivity  of the member and also

know the; therefore, we know and we also know the definition of different degrees of

freedom. So, we know that a particular elements in the global; in the stiffness matrix

member stiffness matrix corresponding to which degrees of freedom, right.

So, then based on that we have to populate  the global stiffness matrix.  Initialize,  we

initialize the global stiffness matrix at 0, and then element wise for every element we

take the for every member will construct the stiffness matrix, and in that stiffness matrix

we compare element by element by and then put that in the substitute in any subsequent

places, in the stiffness matrix, global stiffness matrix.

(Refer Slide Time: 07:58)

And this is done here. Member stiffness matrix is 6 by 6 here if you recall. So, this is the

assembling  of  the  stiffness  matrix.  The  resultant  the  kg  will  be  the  global  stiffness

matrix. Now once we have the global stiffness matrix, next is we have to partition the

stiffness matrix, partitioning of the stiffness matrix is done here, K 1 1 is this and K 2 1

is this and then this is the load vector, correspondingly we have to partition the load

vector as well.
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So, this is the corresponding load vector. And then what we have is, we have p if you

recall, then we have K 1 1, K 1 2, K 2 1, K 2 2; all K 1 1 K 2 2 they all are matrices, then

this is equal to U unknown, and U known that is equal to P known and P unknown, right.

So, from this we will have this expression K 1 1 into U unknown is equal to P known

because  U known is  0  that  is  why this  contribution  will  be  0.  So,  if  we solve  this

equation we get u 1 1. So, this is done in this expression. It is solved for U u and then

this  u  give  you  the  solution  of  this  unknown  displacement.  So,  once  we  have  the

unknown displacement, next step is to we have to find out this support reaction. And the

sub what will be the support reaction? Support reaction will be we have to consider the

other part for the support reaction, for this part for the support reactions.

So, P support reaction will be if you recall then K 2 1 into U u is equal to P u this gives

you the support reaction right. And these support reaction this is been done here. So,

once we have the support reactions and then the member forces, these is the member

force.
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This  is  the  member  force  is  calculated  here,  if  you  recall  the  member  force  the

expression for member force for 3-D truss was; for 3-D truss was it was minus, in just 1

minute, let me come to that, yes. So, it was if you recall the member force for a given

member.
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The member force is. F is equal to AE by L AE, AE by L, and then we have lambda x,

lambda y, lambda z, then minus lambda x, minus lambda y, minus lambda z and then for

that particular member, for that particular element what is the v.



So, if you from that we get the member force, and this is exactly performed here. So, this

is this, now once we have the member stiffness member, member this then we all know

we  have  all  the  information;  which  is  required  for  the  analysis.  Support  reactions

displacement and the member forces. Now let us run it and then see what are the result

coordinates and everything are given here.
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So, run it; so these is the plot, this is not a 3-D plot, actually the structure is in 3-D, this is

a 2-D projection of the plot. So, that is not important right now for us. So, let us see what

are the values of displacement, first you see what is the displacement total U u.
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You see all the first u, first 9 U will be 0 because they are constrained, then we have rest

of the rest of U u 10 11 and 12 these are the values of u 10 11 and 12. And then the

support reactions, if you take the support reaction, these are the support reaction, the first

3 is for (Refer Time: 11:53) for join number 1, this is for join number 1, this is for join

number 2 and this is for join number 3 in the corresponding reaction.

And similarly we have, we can calculate the member for member forces. Member forces

will be this. So, this is 3 members, these are the members force. So, this is for member

number 1, member number 1 the member number 2 and member number 3, right. Now

you can, these truss since it is smaller comparatively you can do it manually. You do it

manually and compare your results with these results. And then do other exercise like

you change the Young's modulus, change the area of the area of particular member, and

then do this exercise to get some idea about the structural behaviour.

Because you see if you in as in a truss, if some members are some members are having

say, smaller dimensions; or some members are having smaller, lower Young's modulus,

then what happens to the behaviour of the structure.

So, that exercise if you do you get that comprehension may come. So, this was for the

first  example.  Let  us  do  it  the  similar  exercise  for  the  second example.  So,  second

example was this; this is the second example. And suppose and this is if I draw a line

diagram line will be this.
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Now in this second example, let us first give the numbering of this a node numbering.

This is node number 1, this is node number 2, this is node number 3, this is 4, this is 5,

then this is 6, 7, 8 and 9. And similarly we have 10 11 12 13 and 14. And then this one is

15, then 16, 17 and 18 total 18 node these all are nodes.

Now, the coordinates of these nodes are written I will show you the coordinate.  And

suppose it is subjected to some load at all the places, we have some load. And these are

all  nodes,  now  for  member  number  1;  for  member  number  1  the  degrees  of

corresponding degrees of freedom will be; corresponding degrees of freedom will be this

is 1, this is 2 and this is 3. Member number 2 similarly it is 3 4 5 6 and so on now. So,

what another information from here is the since from node number 1 2 5 and 10 to 14

they are hinge joints.

So, corresponding degrees of freedom will be 0. So, u u known, u known will be it is

member it is your degrees of freedom 1 2 all the degrees of freedom associated with

these nodes, let us not write it here. So, see the code, now this is the code; this is we have

another one. This is the code.
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This is the nodal coordinates given, and corresponding connectivity of these nodes are

given, connectivity of the elements are given. This should be 3, 3 into number of nodes

the degrees of freedoms as we discussed.
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Now, this is you see, this is the load on the top on these nodes, these are the loads.

So, if we this is corresponding to the it is degrees of freedom along the y axis. So, we

have to those values, those values will be only non-zero and rest of the values will be 0.

So, this is the nodal vector.
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Now, the boundary condition, this is known degrees of freedom, again this is unknown

degrees of freedom, we have discussed this. And finally, the same procedure, it is also

the same procedure and then finally, we have the k 1 and k 2. So, only thing the rest of

these,  all  these  steps  are  general  only  thing  that  that  we  have  to  give  input  is  the

information about the configuration of the structure, information about the boundary and

information about the load.

Now, you see the purpose of this code for instance if you use any software. That software

really you draw this and you apply a you apply the load using graphical interface; which

is more, which is where you do not have to really give all this information in writing, you

can you can do that  through a graphical  interface. But  here the purpose is;  here the

purpose is to demonstrate the fact that these, how easy the method is to translate into

getting translated into a composition code.
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Now, so if I solve it then if I solve it this.
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So,  this  is  again  this  is  a  projected  2-D deform shape.  Now  if  I  see  the  say  total

displacement, total displacement will be this. These are all total displacement.
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These 0’s that you can see that is corresponding to the degrees of freedom; which are

which are constrained.
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And then the support reactions, support reaction is P u.
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The support reactions are these, if we join all the support reactions, let us then what will

happen is, you should be getting the total load will be 0 if we join them. Whatever load

we  apply  on  this  structure,  in  the  corresponding  direction  if  we  join  them  that

equilibrium should be satisfied; is a very important thing you see. All these we when we

derive this in the formulation the equilibrium equation we use. So, necessarily the satisfy



equilibrium equation, but the problem comes when you translate those equations into a

code.

So, it is very important you evaluate your code. Validate your code just not the final

results, you validate every steps in your code. For instance, whether one check I can

make  is  check  whether  the  whatever  forces  I  am  getting  whether  they  satisfy  the

equilibrium or not right. So, these should be we should check that. Then k g if you check

the total stiffness matrix, the global stiffness matrix, the global stiffness matrix is huge it

is a global.
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Now you see the maximum entity, it is a very important and we will discuss that towards

the end. If the maximum entity in the global stiffness matrix is 0 some of the values are

non-zero.
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Now so, when you actually store a stiffness matrix in, this case the stiffness matrix is say

here number of degrees of freedom is and number of.
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Here number of degrees of freedom is how much; let us see it is, yes. So, it is number of

degrees of freedom is 54, but you know, you can have a structure where number of

degrees of freedom used in terms of 1000. So, and in that case your decides the stiffness

matrix will be 1000 by 1000. If you see real structure, it is not even 1000 is much much

more than that your size of the stiffness matrix. But, if you look at the stiffness matrix,



the most of the entities in the stiffness matrix is 0. Some of the entities in the stiffness

matrix  depending  on  the  connectivity  of  the  member,  some  of  the  elements  in  the

stiffness matrix will be non-zero.

So, in that case the storing of stiffness matrix, storing all that stiffness information is an

important part in the code. One way is very crude ways you store stiffness as a matrix in

a matrix form. But when you store in a matrix form, if the size of the matrix is say 1000

and 1000 by 1000 so, essentially he was storing 10 to the 4 elements 10 to 4 information.

Even it is 0, but you are storing it right, when you when you store entire information in a

matrix form. But since most of the elements in the stiffness matrix is 0 you can store in a

different way. You can store only the nonzero elements in the stiffness matrix, and they

are corresponding position in the global in the global stiffness matrix.

So, this is another aspect when you write a code so, you have to see how these matrices,

all these better always better to avoid these matrix operations inversion, storing if we can

do  it  in  some other  way, that  you  have  to  find  out.  Another  important  thing  is  we

mentioned some time back during the discussion of discussion in some of the discussion

earlier; that you can change the numbering pattern. See whatever way you number, you if

your degrees of freedom numbering of the degrees of freedom and the numbering of

nodes are consistent, you will get the results there is absolutely no problem in that.

But you know if you change the numbering pattern, then what will happen? You make

your stiffness matrix banded. Banded stiffness matrix means the diagonal term, and some

of diagonal terms will be non-zero immediate of the diagonal terms will be non-zero, but

rest of the thing is will be 0. For instance, one example of banded stiffness matrix is if I

have to if you have to write some example suppose; it is 1, 2, 3, 4 and then so, you have

a  stiffness  matrix,  and then  this  is  the  diagonal  entity, and then  you have  some off

diagonal entity here. And then some off diagonal entity here, another of off diagonal

entity, another off diagonally entity and this is 0, and this is 0. All the elements here is

both triangles up and over lower triangle will be 0.

So,  this  is  banded stiffness  matrix.  You can  achieve  this  banded stiffness  matrix  by

numbering, by changing the numbering pattern. If you if you number it oppositely, what

you can have is you get a matrix. But those matrix is populated in this such a way that

these this feature you will not get. You get you get something like this. For instance, this



matrix the numbering is  done a very arbitrary way. This is  not a, this  may not be a

banded stiffness matrix, you see. So, here it is 0, then non-zero then some of the elements

0 here, and then some of the elements 0 here. So, that will discuss later how to what

would be the numbering pattern so, that you can get these stiffness matrix in this form.

So, this is important; that you keep in mind when you actually number the nodes. It is

just  not  numbering  oppositely.  We check  the  determinant  of  k  g,  just  across  check

determinant of k g is 0 it has to be because the boundary conditions were not satisfied.

So, this is now you can explore as I said these codes will be uploaded on the forum. This

are very basic code some of the information actually you have to do it you have to give

manually.
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But it gives you a flavor that of (Refer Time: 23:26) computer implementation of the

method. So, you can further explore it,  you can solve some other different problems

using the code and check with other software and your solution and. And also you can do

some exercise like changing the Young's modulus, make one suppose you have a truss

where you have 100 members, and make one member very soft. Very soft in the sense,

you reduce the Young's modulus of the one-member drastically. And rest of the members

Young's modulus are same. And then check what is the behaviour of the track are you

getting any localized behaviour on did not. Or are you getting a localized deformation at

a place where your elements your members are weaker.



So, these are the important things these through this exercise, you can have some, you

can develop some comprehension some idea about the behaviour of the structures. So,

here I stop today. So, next class what we do is, we do this similar exercise for beam;

again will take two problems in beam, and then see how using this code those beam

problem can be solved. See you next class.

Thank you.


