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Welcome. This is lecture 4 for module 1 where we are discussing Tensors. So, in the last

class we basically discussed tensor algebra. So, one of the important part of which is we

learned in the last class that tensor inner product of tensor which is basically the;
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So, just to remember things I just wanted to write it once again. So, A B contradiction B

or A inner product B, where A and B both are tensors. So, it is represented as trace of A

transpose B. So, trace we know it is the sum of the diagonals of this product. So, A

transpose B. So, both of these are second order tensors. So, now this is you see this is

contraction.  What  does  this  contraction  means?  This  is  sometimes  we  called  as

contraction. What does this contraction means? Now, see these both of them are second

order tensor. So, this trace is a scalar function that we know because if I write trace of A

matrix which is or trace of a second order tensor.

So, what is this? This is trace of A a ii. So, ii is a summation implied in it. So a 11 a 22

and a 33. So, you see that inner product of two tensors are essentially a contraction in a



sense that tensor is a, this has two directions, but trace does not has any direction. So,

stress is a scalarso from a second order tensor, it comes to the scalar. So, similarly if I

take the inner product of a fourth order tensor with the second order tensor, so it will give

me another second order tensor.

So, this is important and this why I am discussing here. So, if you have seen the Hooke’s

law, right the Hooke’s law all of us have seen in this form that sigma is C epsilon right,

but C is a constitutive matrix right and epsilon is a strain vector and sigma is a stress

vector, right. So, these are in the void notation, right which we have discussed in the last

class. So, these are the vectors, but in here these are the tensor. So, sigma is a second

order tensor, epsilon is a second order tensor, but what is C? C is essentially the fourth

order tensor. So, this fourth order tensor essentially has four components; for instance if I

write it in component form, it has to be C ijkl. So, this we will discuss when we will

discuss it in material behavior. So, this is elasticity tensor or sometimes known as the

Hooblian Tensor. So, these fourth order tensor is essentially if I take the inner product

with  a  second  order  tensor  which  is  strain,  then  it  will  reduce  two  times.  So,  its

dimension from fourth order tensor to second order, it will operate on a second order

tensor and it will convert this to a another second order tensor.

So, this has to, this probably we have not discussed in this last class. So, this we have to

keep in mind. So, again we will see it in detail in when we will do it in the material

behavior. Now so in this lecture we will basically introduce the calculus of tensors. So,

calculus is basically probably all of you have learned what derivative is, what gradient of

a vector field is, what divergence of a vector field is. So, now we will concentrate on

what these quantities in a tensor field is. So, I am using the word field, right so let us

define what field is.

So, values of tensor varies from point to point. That means, a field can be displacement, a

field can be stress, right. So, if it is a displacement as we know displacement is a vector,

so we will call it a vector field, right and if it is a tensor for instance stress, stress is a

tensor field, second order tensor field. So, the values of these vector or tensors or it could

be a scalar field for instance temperature.  Temperature could be different at different

points so it is a scalar field. So, values of tensor field or values of this field varies from

point to point. So, naturally if it is a value and if it  varies, it  may vary or it may be

constant also.



So if it varies from point to point, it will be a function of x y and z, right. So, example

stress strain of an elastic body varies from point to point. So, naturally it is a function of

x y z. So, tensor field or zeroth order tensor which is a scalar field can be a function of a

of x 1 x 3 x 3, right. So, we write it in short form a of x i. So, if it is a vector field, then

for instance velocity displacement or any other quantity which is also a function of x 1 x

2 and x 3. Remember here that a i; a as three components here when it is a vector and all

three components that is a 1 a 2 and a 3 are all dependent on x 1 x 2 x 3.
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So, if I write it little in a expanded form, so a 1 is or in a component form a 1 is also a

function of x 1 x 2 x 3, a 1 is a function of x 2 x 1 x 2 and x 3 and similarly a 3 is also a

function of x 1 x 2 x 3, right. So, this is the short form of this and we write it a i x i. That

means, a i's are all function of x i's, right. Similar to this as a vector field, we can define

tensor  field  also.  The tensor  field  A ij  is  essentially  all  components  of  the  tensor  is

dependent on special coordinate system or the x 1 x 2 x 3 system. For instance, stress

varies from point to point. So, x 1 x 2 x 3 are all a special coordinate system, right. So,

once we know the concept of field, a field could be scalar field, a field could be a vector

field, a field could be tensor field also.
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So, now the derivative of the field variable. So, once we know the field, so the field

variable comes, right. So, the field variable for instance if I want to take the derivative of

a scalar field, so it is dou dou x i of a, right which I write it in short form a, ix. So, this is

important because we will be using this. So, when I write comma, that means a, i. That

means, I am implying that del del of x i of a, right. So, similarly a i,j; that means I am

implying  a  i,j.  That  means,  I  am implying  that  del  of  del  x  j  of  a  ith  component.

Remember in the previous slide we have seen that a i are all functions of x 1 x 2 x 3. So,

ith  component  of  vector  a  is  differentiated  with  the  jth  component  of  the  special

coordinate system, right. So, these are the special variable, right.

So, similarly if I write it in this, if I expand it, it will form like this kind of 6. So, each

component will be differentiated with respect to special system. Now, similarly we can

define  a  tensor.  In  case  of  a  tensor,  we can  define  since  tensor  has  two directional

component. So, when I write a ij, k, this represent my del del of x k a ij. So, aj a ij th

component which is also dependent on x 1 x 2 x 3 is differentiated with x k. So, this is

important  to remember here because we will be using more this  shorthand notations,

right.
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Now, I think all of you know what derivative is, but if I say it say directional derivative,

then probably you do not know.

So, let us know what directional derivative is and why we need to do you know more in

this  course  we  are  introducing  tensor.  So,  today  a  tensor  directional  quantities  for

instance stress, strain, these are the directional quantities. So, when I take derivative, the

derivative  could  be  along  its  direction,  right.  So,  these  motivators  to  learn  what

directional  derivative.  Now,  before  going  to  a  tensor  directional  derivative,  let  us

understand what  if  there  is  a  scalar. So,  psi  is  a  scalar  function  of  xyz and s is  the

direction along which derivative mean to find. So, it can be also done, right which is

simply  del  psi  del  x  del  x  del  s  and so  on.  So,  parameterization  of  a  curve  if  you

remember, any function which is xyz dependent can be taken derivative in this form,

right.
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So, it is I think all of you know right. Now, let us learn what directional derivative. So, a

function y x here whether I am not saying whether it is a scalar function, whether it is

tensor function, whether it is a vector function, I am not defining anything. So, let us

write it in a simple form what the directional derivative. The function y x is differentiable

if there is a linear transformation D of y of x, such that u approaches to 0. Now, where

this incomes from? So, let us expand it y with a x plus u. So, if I write it in this form if

you  have  seen  the  basic  differentiation  formula,  this  is  nothing  but  the  basic

differentiation formula or you can obtain it from Taylor series formula also. So, this thing

this quantity I am talking about is that linear transformation which this D of y of x.

So,  it  is  a  linear  transformation  on  u.  Now,  this  is  the  higher  order  trans  which

approaches to 0, right. Now, what does this means which approaches to 0 means that

limit so limit of u tends to infinite. So, this term if I divide with the norm of u, so this is

essentially  the norm this quantity is known as the norm for instance Euclidean norm

from a vector. So, it could be a distance, for a tensor it could be a maximum norm, it

could be l 2 norm or the distance norm or the Frobenius norm in case of a second order

tensor. So, this kind of quantity should go to 0, but let us not bothered about these things

right now. So, let us see what this linear transformation means actually so these let us.
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So now if this linear transformation exist and unique, then it is called simply derivative

or fresher derivative probably you have heard this. So, a derivative of u y at x 0, right

and then, this total quantity this total quantity is known as the directional derivative or

the get out derivative where there is a imply direction u is there. So, if you look these

two expressions carefully, this is a frechet derivative and this is a directional derivative.

So, directional derivative actually operates on the frechet derivative. So, that means the

directional derivative is computed by the action of the frechet derivative. So, we will see

what this means.

Now, the directional derivative exist and if it is unique, then can be written as the usual

derivative formula where epsilon tends to 0, right. So, this is the formal definition of the

directional derivative.

Now, let us see some example of how we use this. So, what we have learned? We have

learnt two things. One is frechet derivative and one is directional derivative. Now, let us

see some example.
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Suppose we want to take the derivative of a function which is v dot v, v is a vector. So, it

is a scalar function dot product will lead to a scalar function. So, v dot v. So, what is the

directional derivative if we want to compute the directional derivative? So, phi of v plus

u is  essentially  v dot v 2 v dot u plus o u.  How it  comes? You just  write,  you just

substitute in case of a v, you write v plus u and then, multiply it. So, dot product we can

just simply write it like this v plus u dot v plus u which will give me v dot v plus u dot v

plus v dot u plus u dot u, right.

Now, this v dot u and u dot v, I can club together because all of these are scalar quantities

which I can club together and put like this to read out u an order of u is essentially u dot

u.  So,  now if  you  compare  the  directional  derivative  formula  essentially  directional

derivative  is  this,  right  and  frechlet  derivative  is  2  v, right.  So,  we  can  write  it  in

component form also, right. Now, if there is instead of a vector if it is a tensor, right

tensor argument right phi of T. That means, T is a second order tensor. So, if it is T 2, that

means I can write it T into T, right. So, this if I want to find out the directional derivative

T plus U if I write and the same way if I write, so T U and U T remember here. So, this is

the second order tensor. So, this I cannot write T U equals to U T because as we know we

can  think  of  a  second  order  tensor  as  a  matrix.  So,  matrix  multiplication  is  not

commutative in general. So, that means a b not necessarily equals to b a. So, I have to

write it in this form T U plus U T. So, if I see in this if I want to find out the directional

derivative which is essentially T U plus U T. Now, suppose one of the popular function



we are using or we know today is trace of T, now trace is a linear function if you look

carefully. So, I think I have also discussed this trace is a linear function. So, trace of T

plus U which is essentially trace of T plus trace of U, right.

So now if we see the directional derivative which will be essentially trace of U. So, trace

of U I can write that I contraction U or I inner product U because I inner product U is

essentially trace of I transpose U. So, I transpose is essentially I and I multiplied by U is

essentially U, right. So, I can write it in this form. So, now determinant of T determinant

is the third invariant of stress tensor or strain tensor we know this. So, determinant if we

want to take the, find out the directional derivative along the direction of U, so this is

contrary to the trace determinant is a non-linear function which cannot be just write det

of T plus det of U. So, if I expand this determinant of T plus U, then det of T cofactor of

T inner product with U and T cofactor a inner product with cofactor of U and then, det of

U, right.

So, these two quantities goes into the order of U and then, this could be the; this is the

my directional derivative. So, D of phi of T along the direction U see whenever we use

tensor arguments, our direction has to be the tensor direction. For instance, in case of a

vector we always use a direction as a vector, but here in case of a tensor, it always has to

be in the direction of a tensor. Now, those probably who do not know what cofactor of T,

it is the adjoint transpose which we have from our matrix algebra knowledge, we can

find it. So, the inverse of a tensor I can define it in like this cofactor transpose cofactor of

that tensor transpose divided det of T determinant of T. So, in a matrix algebra we have

seen this and we will just note it little.
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So, this is tensor inverse actually if a is A if i had to take inverse which from the matrix

algebra knowledge, we can write cofactor of a divided by det of A. Now A cofactor or

the cofactor of A which is essentially cofactor matrix or the adjoint matrix, right so, let us

see how this cofactor matrix A is computed. So, if A is a 11 a 12 and so on, then adjoint

matrix is C ij. Now what is C ij? C ij is this quantity which is essentially the determinant

of the minors. So, M ij is from deleting ith row and jth column for instance M 11. So, M

11 is essentially this, right.

So, this portion determinant of M 11 is a 22 a 33 minus a 23 into a 32. So, c 11 is minus

11 plus 1 that is minus 1 to the power 2 that is 1 which is a 22 minus a 33 minus a 23 into

a 32. So, c 11 like this we can find out c 11 and then, other quantities. So, this is a very

well known matrix algebra. Now, this is actually is that adjoint matrix. So, this forms the

transpose  of  these  actually  is  the  adjoint  matrix  which  is  essentially  known  as  the

cofactor matrix. So, in order previous case where we actually found out the directional

derivative of determinant of tensor T which I have expressed, you can actually verify

these things whether the determinant of two summation of two matrix can be written in

this form.

So, this is very helpful to find out the directional derivative. Actually one can prove this

is  the determinant  of the total  determinant  if  you sum this  matrix  and then take the

determinant and then, instead of that has to be equal to determinant of the individual



matrix cofactor of T inner product of U and then, so on. So, cofactor of T inner product

of U essentially trace of cofactor T transpose into U. So, this is essentially a scalar so this

is also a scalar, so, this becomes a scalar. So, finally the determinant will be a scalar even

though it is a scalar function. These quantities makes them the non-linear function so it is

not just simply det of T plus det of u, this one can remember. 
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Now another interesting thing probably all of you have seen is nabla operator or del

operator.

Del operator is a vector actually so del del x e 1 del del y e 2 del del z e 3 and so on. So,

what we write is essentially del i e i. So, in a initial notation gradient of a scalar function,

when I write radiant of a scalar function, it is just del of psi. So, del of psi means each

component  has  to  be  taken,  the  derivative  has  to  be  taken  with  respect  to  each

component. So, del of psi x del of e 1, these e 1 e 2 and e 3 are the unit vectors along the

cartesian component direction.

Now, this  quantity  is  a  vector  quantity, right.  So,  scalar  even though psi  is  a  scalar

function,  the  gradient  of  this  scalar  function  is  a  vector  quantity  so  this  has  to  be

remember. Now, another general formula for finding out gradient is essentially the inner

product with this  inner product with a vector  u which is  the direction here.  So, it  is

essential if you take the inner product and with the del operator of this function with the

u and then, these two quantities is equal actually this is how gradient is defined. So, with



the appropriate product, inner product, so why they appropriate product inner product the

word appropriate inner product because u could be a vector, u could be a tensor or x

could be a vector x could be a tensor.

So, that is why in case of inner product defined on a vector field which is essentially dot

product in case of a tensor product which is essentially the inner product of two tensor

which is again the scalar. So, when defining the gradient, the proper inner product has to

be defined. Now, this could be; those who are interested this could be elaborated much

more and study further on these aspects. So, now our objective is to find out the scalar

product, scalar function here. Now, if I write from our previous knowledge of directional

derivative if phi of x is a scalar function with a vector argument that means for instance

the function we have seen v dot v both of these are vectors, but their dot product is

scalar. So, such kind of function if I want to write in the sum with another vector u so

which  is  essentially  phi  of  x  plus  u phi  of  x  and del  phi  of  x  and u.  So,  from our

definition, this del phi of x dot u which is essentially I have represented with a braces

here essentially to define the inner product, so this del phi of x u is essentially del D phi

of u so it is equal to the directional derivative.

Now, this quantity is essentially del phi of x dot of u right. So, if I write this thing and

then, if I write it in component form, my directional derivative my gradient I can find out

gradient of a vector field very easily which is essentially the component form del of phi x

i which is del phi of x i del phi of x with x i.

Now, how can I find out here? This is essentially if I take u i as e i because e i these are

unit vectors along the x direction y direction and z direction.



(Refer Slide Time: 26:38)

.

Now, similar to this if we find out scalar function with a tensor argument, the same way

we can find out the gradient, but the function is tensor function, but arguments are the

scalar arguments are tensor. For instance, trace; trace is a scalar function which is the, but

the argument is tensor trace of a second order tensor.

So, if I now want to write the gradient, so I can write it del phi of X ij with del phi of del

X see this is the tensor. So, derivative with respect to tensor function, so contraction u.

So, if I write it in this form so in the initial form it will look like this. So, gradient of a

tensor for scalar function with tensor argument in a component form is this. Essentially

see phi is here is a scalar function and this has to be remembered. Now, similarly I can

expand it for a tensor function where I can just simply write it in this form with the

proper inner product defined. Now, for instance if I see I was talking about the trace.

Trace is the first invariant if I want to find out the gradient of i 1 with respect to sigma,

then this formula tells me that which is high.

So, this sometimes we will  use these kind of treatments  for finding out the required

derived quantities in this course.
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So, now another important thing is a vector function. So, gradient of a vector field even

though inner product is defined, this quantity is not a scalar quantity so this is a vector

quantity. So, if I write it in the gradient of a vector field in a component form, this will

look like this. So, the definition of a gradient of a vector field is this. It is essentially

equals to the directional derivative. So, del of v of x is a gradient of vector field which is

essentially in a component from del v i del x j e i tensor product e j. Now, remember this

is expansion that means this is a matrix.

So, gradient of a vector field is a matrix. So, this has to be remembered in mind. So,

gradient actually increases the number of direction. So, one it was a vector field so now

it becomes a gradient of that vector field becomes tensor field. So, it has two components

ij.  Now,  another  important  quantity  probably  all  of  us  know  divergence.  How  the

divergence is defined? So, we know that del dot v is the divergence of v, right which is

essentially  I  can  write  trace  of  gradient.  So,  if  I  write  it  in  this  form or  from this

component form, so del v i del of x j is essentially trace of e i e j. So, trace of e i e j I can

write it is as simply dot product. So, this proof is very nice actually a dot e i e j and then,

it becomes a del i j and then, del v i del x j.

So, this is known as the divergence of a vector field. So, now another quantity probably

all of us want to know is divergence of a tensor field.
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So, divergence of a tensor field is similarly increases another directional  level which

becomes a third order  tensor. So,  these are the general  formula and actually  we can

define  for  any  order  of  tensor  so  this  becomes  a  third  order  tensor.  Now, similarly

divergence, sorry this is a gradient of a tensor field and the divergence of a tensor field

also becomes a is defined like this del dot T dot v so del dot T transpose v.

You see if this is a second order tensor, this quantity becomes vector and this quantity

becomes dot product. So, now this in a component form, I can write it in this form. Now,

the next we will see some example on this.
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So, gradient of a vector which is simple we know that v i e i dot v j e j and then, v j, i is

essentially  we have seen this.  So,  another  important  thing is  Laplacian.  Laplacian  is

essentially del dot del. So, del of v for instance if I can write it in this form that del dot

del f, right so in this form I can write the del f becomes the vector and then, again it is a

dot product with there so it becomes a scalar, right.

So, now curl of a vector field.  So, all these things you know because curl is a cross

product. So, if I write it in component form, it will look like this. See we have used here

the Christoffel symbols so this becomes this. So, curl of a vector field is a vector. So,

Laplacian of a vector field so Laplacian is again I can write it in this form del dot del of u

or v whatever it is. So, if I write it in this form so del i then in Laplacian of a vectors

field will be a vector. So, these things we know already from our knowledge of vector

algebra, vector calculus. Now, there are some important results these also we need to

know. So, del dot del cross v which is essentially 0 and del of psi of phi is phi of del of

phi and plus del of psi of phi and then, del dot del of psi is essentially del square psi so

psi is a scalar function. So, this is essentially the Laplacian.
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So, now we will go for an example today to see what these quantities looks like. Now,

for instance if I define a scalar field of this and vector field of these, then what does this

del phi means. So, del phi is essentially this del operator or the nabla operator, then x

square minus y square if I take it, if I take inside, it is just the derivative with respect to x

and just the derivative with respect to y since it is not a function of z, then this has this

quantity  is  gone 0.  So,  now, del  square phi,  that  means the Laplacian  of that  scalar

function. So, essentially del phi dot del or del dot del phi so del phi actually we have

computed from the previous part and then, if I just take again take it inside, so it becomes

this.

So, it  is a dot product,  ok. So, now divergence of that u vector this  is  a vector. So,

divergence of u again this is a dot product. So, this is essentially a scalar. So, now if you

see this all those quantities here at scalar, but it is not necessary that all these quantities

will be scalar, right.
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So, for instance the gradient; gradient as I have told that this vector is a, this will increase

the dimension of the vector dimension of the field variable. That means, if I do take a

gradient  of  a  vector  field,  it  will  become  a  second  order  tensor.  So,  if  I  just  take

component wise take the derivative, it will look like this, right. So, curl is again is a

vector. So, if I take the determinant of this, so the determinant in that cross product we

have  defined  earlier  cross  product.  So,  it  becomes  this  so  it  is  a  vector.  So,  this

essentially completes our tensor algebra.

In the next class, we will review some of the integral transform integral theorems which

will be useful when we will be doing the boundary value problem. So, in the next class

we will go for the integral theorems.

Thank you


